タグ:分かりやすくの記事一覧

試してみたらこうなった

虚弱体質や慢性疾患を改善させる為に必要な情報や心得について、体験記を交えながらお話します。

タグ:分かりやすく
高尿酸血症の原因と問題について分かりやすく説明してみた
高尿酸血症の原因と問題について分かりやすく説明してみた

 

「酸性食品」、「アルカリ性食品」…という判断基準は、「食品そのもののpH」ではなく、「食品に含まれているミネラルの性質」で決まります。

 

 

 

 

その基準で判断すると、肉は分解すると酸を発生させる「含硫(がんりゅう)アミノ酸」が多く含まれているので、「酸性食品」に属することになります。

 

 

 

「肉は酸性食品だから血液を酸性化させる」…という説について調べると、酸性化させるのは「血液」であるという説と、酸性化させるのは「尿」であるという2つの説に遭遇します。

 

 

 

以下の記事では、酸性食品を摂取しても、血液のpHには影響しない、そのかわり尿のpHは酸性化させる…という話をしました。

 

 

 

酸性食品とアルカリ性食品の定義と影響について分かりやすく説明してみた

 

 

 

酸性食品の動物性タンパク質によって骨粗鬆症になる説の真相と、含硫アミノ酸のメリット

 

 

 

今回はその続きです。

 

 

 

 

pHがちょっとでも酸性に傾くとヤバイのは「血液」です。

 

 

 

 

「尿」はそこまでではありませんが、pHが酸性化して全く問題がないわけではありません。

 

 

 

「痛風」の原因とされる「尿酸 にょうさん」の濃度が上がりやすくなるからです。

 

 

 

 

 

細胞の構成成分の1つである「プリン体」を分解して、最終的にできるのが「尿酸」です。老廃物ですので、通常は尿として排泄されます。

 

 

 

 

しかし、「尿のpH」が酸性に傾いた状態だとこうなります。

 

 

 

 

尿を酸性化させる食べ物(肉等)の過剰摂取

 

 

尿のpHが酸性化する

 

 

尿酸が溶けにくくなるので排泄されにくくなる

 

 

血液中の尿酸値が高くなる(高尿酸血症)

 

 

高尿酸血症が続いて、尿酸が結晶化すると痛風になる

 

 

 

 

 

 

この流れでは、「痛風を始めとした疾患になる原因は、肉の過剰摂取による尿酸値の上昇」…と解釈する事ができます。

 

 

 

 

これも「肉やタンパク質を避ける原因」になるので、本記事では、「尿酸」に焦点をあてます。

 

 

 

スポンサーリンク

 

 

尿酸値とは

 

 

 

「酸性食品ではなく、アルカリ性食品を摂取した方が良い」は、「尿酸値」が高い時にも言われます。

 

 

 

「尿酸値(血清尿酸値、血中尿酸値)」とは、血液中の尿酸の濃度の事です。

 

 

 

 

尿酸は、尿とともに排出されますし、「尿酸」という字から、「尿の酸性度」を調べるイメージをしてしまいそうですが、そうではありません。

 

 

 

「尿酸値」は血液検査で調べます。

 

 

 

この数値によって、「血液 1dL(100mL)の中に、尿酸が何mg含まれているか」を知ることができます。

 

 

 

正常値は「 4.07.0mg/dl」で、

 

 

 

 

7.0 mg/dl以上…と、尿酸値が高い状態を、「高尿酸血症 こうにょうさんけっしょう」と言います。

 

 

 

 

ちなみに、「尿酸」と「尿素 にょうそ」も名前が似ているので、間違えないように違いを書いておきます。

 

  • 尿素・・・「タンパク質」が体の外へ捨てられる時の最終的な姿

 

  • 尿酸・・・「核酸」が分解されたり、「ATP」が代謝されたりして、「プリン体」になり、さらに代謝された姿

 

 

 

尿酸とは

 

 

 

「尿酸」は、「プリン体」を分解して最終的にできた物質です。そのパターンがこちらです。

 

 

 

 

  • 食品の摂取によってプリン体を摂取、尿酸へ変換

 

  • 細胞の分解(核酸)によってプリン体が生じ、尿酸へ変換

 

  • 激しい運動(ATP)によってプリン体が生じ、尿酸へ変換

 

 

 

 

元となった「プリン体」は、食品から摂取するイメージが強いですが、その量はわずか2~3割です。

 

 

 

7~8割は生きているだけで体内で作られています。こちらを簡単に説明します。

 

 

 

 

 

  • 核酸(細胞の核を構成する)の構成成分 → 古い細胞が分解されるとプリン体が生じる

 

 

 

  • ATP(エネルギー物質)の構成成分 → 激しい運動をすると、分解されて尿酸になる

 

 

 

『みたかヘルスケアクリニック 健康で幸せな生活のために。 痛風・高尿酸血症について』より引用

 

 

尿酸とはプリン体という物質であり、体内の細胞の老廃物です。

 

 

尿酸という言葉は「尿に排泄される酸」という性質に由来しているそうで、通常は代謝の経過で腎臓から燃えカスとして尿と共に一定量排泄されるものです。

 

 

尿酸の血液内における濃度、いわゆる尿酸の基準値は、おおよそ「 4.0~7.0mg/dl位」が正常とされています。

 

 

 

ふつう体内では、毎日0.5g程の新たな尿酸が自己生成され、更に食物から0.1g程を吸収されて、常に体内外を循環しています。

 

 

 

 

作られた「尿酸」のその後です。

 

 

 

  • 体内で一定量ためられる(尿酸プールと呼ぶ)

 

  • 「余分な尿酸」は7割が尿、3割が汗や便として排泄される

 

 

 

 

「尿酸」の産生排泄のバランスがくずれると、尿酸値は上がります。

 

 

 

  • 尿酸がたくさん作られる → 尿酸値が上がる

 

 

  • 尿酸が排泄されない → 尿酸値が上がる

 

 

 

ここからは、後者についてお話します。

 

 

 

血液の尿酸値が高くなる原因の1つに、「尿のpHの酸性化」があります。というのも、尿酸には、以下のような特徴があるからです。

 

 

 

  • 「アルカリ性の尿」に溶けやすい

 

  • 「酸性の尿」に溶けにくい

 

 

 

このような性質があるので、尿が酸性に傾くと「尿酸」が溶けにくくなって、体の外に排泄されにくくなります。

 

 

その結果、血液中の尿酸の濃度が上がります。

 

 

 

『KIRANAHLIFE 尿酸値が気になる皆様。ぜひ血液pHを気にしてください。』より引用

 

 

②尿が酸性であると血液に尿酸が増加。

 

 

pH5.5以下の尿には尿酸が排出されなかったという報告があります。尿酸の溶解度の影響だと考えられます。

 

 

pH7.4付近である血液には尿酸はよく溶けますが、高度にpHが制御されていなければ命にかかわるので尿酸濃度が高まってもH+が優先的に腎臓に排出されると考えられます。

 

 

すると腎臓のpHは酸性側になり、腎臓では血液の尿酸は排出されず血液中に留まり、肝臓からは新たな尿酸が供給されますので血中の尿酸値は上昇します。

 

 

 

だから、尿を酸性化させる「酸性食品」を控えよう…という対処法があるわけです。

 

 

 

次は、尿酸値が上がった場合、体にどんな問題が起きるのか説明します。

 

 

 

 

スポンサーリンク

 

 

尿酸値が上がることで起きる疾患

 

 

尿酸値が7.0mg/dL以上が「高尿酸血症」です。

 

 

 

この状態が長期化すると、尿酸が結晶化して全身で悪さをする…と言われています。結晶化した尿酸によって、以下のような疾患になります。

 

 

 

  • 関節に溜まる → 痛風

 

  • 皮下組織や関節などに沈着 →「 痛風結節」を作る

 

  • 腎臓の中に沈着 → 痛風腎を引き起こして腎臓の機能を低下させる。腎不全(老廃物を尿として排泄できない)になれば透析になる

 

 

 

こうなると、尿を酸性化させる食品である肉を食べない方が良い…と考えさせられてしまいます。

 

 

 

動物性食品の摂取は尿が酸性になる

 

 

 

動物食性(肉食)動物の尿は、酸性です。

 

 

「含硫アミノ酸」の影響なのでしょう。

 

 

 

『三和書籍 生活習慣によって大きくpHが変動する』より引用

 

 

健常者の尿は、ほとんどが弱酸性(pH6.0〜6.5前後)です。

 

 

しかし、尿のpHは食べ物や運動などの生活習慣によって大きく変動するので、健常者でもpH4.5~8.0の間で変動します。

 

 

アルカリ尿と診断されるのはpH8.5以上、酸性尿と診断されるのはpH4.5以下とされています。

 

 

 

肉食動物の尿は酸性側で、猫だとpH5.5 ~7.0くらいだそうです。

 

 

 

草食動物之尿はアルカリ性側で、ウサギだとpH7.6~8.8くらいだそうです。

 

 

 

動物食性(肉食)動物の尿は酸性ですが、痛風はありません。

 

 

 

 

彼らの体の構造が、「尿酸」が溜まりにくい仕組みになっているからです。

 

 

 

 

人間も肉食(動物食性)動物ですが、彼らと違うのはこの部分です。

 

 

 

 

尿酸を分解する酵素ウリカーゼ

 

 

多くの動物は、「ウリカーゼ(別名:尿酸オキシダーゼ)」という酵素を持っています。

 

 

 

この酵素は、「尿酸」をさらに「アラントイン」という無害な物質に分解します。そのおかげで、「尿酸」が蓄積しないのです。

 

 

 

 

核酸

プリン体

尿酸

ヒドロキシイソ尿酸

アラントイン

 

 

 

 

例え肉ばかりを食べて尿が酸性に傾いたとしても、「尿酸」が溜まりにくい体の構造なので害はありません。痛風にもなりません。

 

 

 

一方、人間や一部の霊長類は、「ウリカーゼ」を持っていません。このような肝臓のシステムでは、分解は「尿酸」止まりなので蓄積しやすいです。

 

 

 

『公益財団法人 痛風財団 尿酸ってなに?』より引用

 

 

尿酸はほとんどの動物では分解され、体内にたまりません。

 

 

ところが人間と一部の霊長類は尿酸を分解する酵素(尿酸酸化酵素)が遺伝的に欠損しており(遺伝子はあるが壊れています)、尿酸がたまる傾向があります。

 

 

 

 

核酸

プリン体

尿酸(ここまで)

 

 

 

 

 

 

「尿酸」を「無害な物質」に分解できない以上、溜め込まないのが理想。その為には、「尿酸」の排泄を妨げる原因になる「酸性食品」の摂取を控えた方が良い…という理屈になります。

 

 

 

 

人間は、胃や腸は動物食性動物の構造をしていますが、肝臓のこのシステムは、動物食性に向いていないようにも見えます。

 

 

 

何故人間には「尿酸を分解するウリカーゼ」がないのか?考えられる理由は後でお話します。

 

 

 

とりあえず先に、「尿酸が蓄積しやすい体の構造の人間」が、肉食をするとどうなるのかを見ていきます。

 

 

スポンサーリンク

 

 

糖質制限による高タンパクで尿酸値は上がるのか

 

 

 

「酸性食品である動物性食品」の大量摂取によって、尿が酸性化し、それによって「尿酸」が排出されにくくなり、血中の尿酸値が上がる…という流れでした。

 

 

 

すると、動物性食品を大量に食べている糖質制限実践者は、尿酸値が高い事になります。

 

 

 

どうやら、そうなるみたいです。

 

 

『医師水野のブログ 尿酸値と糖質制限』より引用

 

 

まず、私自身の体験談から。

 

 

糖質制限を開始して、尿酸値、上がりました。

 

 

ずっと5台だった尿酸値が、半年で7まで上昇。

 

 

しかし、また半年で5台へ低下しています。

 

 

代謝に切り替わりとともに上昇、代謝が安定してくると下降してくるのだと考えています。

 

 

痛風発作も起きず、結果として5台へ戻ったので、全く支障はありませんでした。

 

 

また実際に尿酸値が12でも発作が起きない方もいれば、尿酸値7をきった6.8でも発作が起きる人もいます。

 

 

 

 

 

また、江部医師の話も参考になります。

 

 

『ドクター江部の糖尿病徒然日記 糖質制限食と血清尿酸値について。2015年3月。』より引用

 

 

 

尿酸値に関しては、糖質制限食実践で、減少する人、不変の人、増加する人と個人差が大きいです。

 

 

もともと尿酸が高値だったのが糖質制限食で基準値になる人がいますが、これは問題ないですね。

 

 

肥満がある人が糖質制限食で減量に成功したら、尿酸値が基準値になることは考えられます。

 

 

もともと尿酸値は正常だったのに、糖質制限食実践で高値となる人がいます。

 

 

 

一番多いのは、低カロリー過ぎた場合です。

 

 

 

糖質制限食開始後、急に尿酸値が上昇したときは、大多数の人が、摂取エネルギー不足でした。

 

 

 

2012年4月4日の毎日新聞の記事によれば、『激しい関節痛を起こす痛風の発症は、原因物質の尿酸を尿から出す機能だけでなく、腸から排出する機能が低下することも一因』とのことです。

 

 

 

『尿酸は3分の2が腎臓から、3分の1が腸から排出される』とは、初めて知りました。

 

 

 

この腸からの排泄機能も、個人差に関係しているのでしょうね。

 

 

 

体内で尿酸をつくり過ぎるか、尿からの排泄が悪いため、高尿酸血症になると考えられてきましたが、これらに腸からの排泄障害も加わることとなりました。

 

 

 

あくまでも私見ですが、この腸からの尿酸排泄は、生活習慣やストレスの影響を一番受けやすいような気がしますね。

 

 

ただ、低カロリーすぎると、どんな内容の食事でも、尿酸値が上昇するので注意が必要です。

 

 

例えば断食(絶食)をすると、尿酸値は急激に上昇します。断食前6mg/dlが、断食中は9~10mg/dlに上昇したりします。

 

 

さて糖質制限食を実践すれば、相対的に高タンパク・高脂質食となります。一般に高タンパク食だと尿酸値が上昇するとされていますが、ことはそれほど単純ではありません。

 

 

例えば、江部康二は、2002年以来13年間、スーパー糖質制限食実践で130g~150g/日のタンパク質を摂取していて、かなりの高タンパク食です。

 

 

しかしながら、尿酸値はこの10年間、一貫して2.4~3.5mg/dl(3.4~7.0)程度と低い方です。

 

 

尿酸は体内の酸化ストレスに対抗する物質という説があります。

 

 

 

私はスーパー糖質制限食で体内の酸化ストレスが少ないので、尿酸も少なくてすんでいるというポジティブな仮説もありかと考えています。

 

 

 

通常、糖質制限食でいったん尿酸値が上昇した人も、摂取エネルギーが足りているならば、数ヶ月~1年で元の値に戻ることが多いので経過をみることが多いです。

 

 

 

ただ、過去痛風発作を起こしたことがある人は、内服も考慮する必要があります。過去痛風発作を起こしたことがない場合は、尿酸8~9mg/dlとかでも、経過をみてよいと思います。

 

 

過去尿路結石のあった人や家系的に腎臓結石持の方々は、尿酸が高値となったときは、梅干しを食べるとか、わかめ・ほうれん草・大根・キャベツ・茄子・しいたけなど摂取で尿をアルカリに保って尿酸が結晶化しにくいようして、尿酸値が基準値にもどるのを待つのが安全と思います。

 

 

尿酸値は、従来、肉の摂りすぎや、ビールの飲み過ぎで高値となるということが常識だったのですが、食事由来の尿酸は約100mgで、一日に生産される総量約700mgに比し、かなり少ないということが判明しました。

 

 

自らが痛風患者であり、痛風専門医でもある、元鹿児島大学病院内科教授、納(おさめ)光弘先生によれば、食事よりストレスや肥満のほうが、尿酸値への影響が多いことがわかってきました。

 

 

 

 

 

長いので要約します。

 

 

 

  • 糖質制限による尿酸値の変化は個人差が大きい

 

  • 糖質制限によって尿酸値が上昇する事があるが、一定の期間が過ぎると元に戻ることも多い

 

  • 尿酸は腎臓だけでなく、腸からも排泄される

 

  • 尿酸値はカロリー不足で高くなる

 

  • 尿酸値はストレスの影響を受ける

 

  • 過去に通風発作を起こした事がある人はアルカリ性食品を食べた方がよい

 

 

 

そして、糖質制限と言えば「ケトン体」です。

 

 

 

ケトン体と尿酸値

 

 

 

「ケトン体」は酸性物質なので、これの影響でも尿酸値は上昇するようです。

 

 

 

『糖尿病ネットワーク 31. 痛風・高尿酸血症と糖尿病』より引用

 

 

なお、減量を急ぐあまり、絶食するなど極端に摂取カロリーを減らしすぎると、体内でエネルギー源として脂肪が利用される結果、ケトン体が発生します(ケトーシス)。

 

 

血液中のケトン体濃度が高くなると尿酸は排泄されにくくなり、尿酸値が逆に上昇してしまいます。

 

 

 

 

肉食中心は尿酸値が上がる要素があるのは間違いありませんね。

 

 

 

 

ケトン体と尿酸値についてはあまり情報がないので、ケトン体の値が高い人の尿酸値の情報が見つかれば書き加えます。

 

 

 

 

余談ですが、酸性物質のケトン体によって血液は酸性化しないそうです。

 

 

『ガンの特効薬はミトコンドリア賦活剤 ブドウ糖を絶てばがん細胞は死滅する!』より引用

 

 

「絶食と同じような効果があって体力も栄養状態も悪化させない食事療法としてケトン食があります。」

 

 

正常細胞はケトン体を使ってATPを作ることができますが、ガン細胞はケトン体を利用できません。

 

 

つまりミトコンドリアはケトン体をエネルギー源として利用できますが、解糖系はケトン体を利用できないということです。

 

 

ケトン体は酸性物質ですが、ミトコンドリアがケトン体をATPに変えられるので、身体が酸性に傾かないようです。

 

 

糖質制限食の第一人者である江部医師は、スーパー糖質制限食を実践してケトン体の値が高いのですが、血液のpHは7.45で充分な弱アルカリ性でした。

 

 

 

スポンサーリンク

 

 

尿酸値が上がる原因

 

 

 

糖質制限をしていると、動物性食品中心になりますし、ケトン体を利用するようになります。

 

 

尿酸値が上がる条件は揃っていますが、それでも、必ず高くなるわけではありません。

 

 

 

他の原因もからんでいるので、もっと大局的に分析する必要があります。

 

 

 

 

痛風にならないように気をつける場合、

 

 

 

これまでのように、「尿のpHを酸性化させないようにしよう」とか、「尿酸の元になるプリン体を控えよう」…だけではなく、他の原因も注意するべきです。

 

 

 

なので、何によって尿酸値が上がるのか、他の原因を紹介します。

 

 

 

意外かもしれませんが、「プリン体の摂取を控える」は、重要度が低いのです。

 

 

 

『ドクター江部の糖尿病徒然日記 Q&A 糖質制限食と高尿酸血症②』より引用

 

尿酸を確実に上昇させるのは、重要なものから順番に

 

 

1、ストレス

 

2、肥満

 

3、大量の飲酒

 

4、激しい運動

 

5、プリン体の摂りすぎ

 

 

です。

 

 

1 ジミーさんの仰る通り、実はストレスが一番尿酸値を上昇させます。鹿児島大学の納(おさめ)光弘先生もご自身が痛風になられて徹底的に自分で人体実験をされて、ビールより何よりストレスが高尿酸血症の原因と断定しておられます。

 

 

2 体重増加も尿酸を増加させる要因なので、 糖質制限食で減量することは良い方に向く可能性があります。

 

 

3 飲酒

 

アルコールを大量に(日本酒1日3合程度以上)飲めば尿酸値は上昇し、断酒すれば下降します。アルコールが尿酸値に影響を与える要因は二つあります。

 

 

一つは、アルコールが代謝の途中で乳酸になり、乳酸が腎臓からの尿酸排泄を抑制すること。

 

 

もう一つは、継続的に多量にアルコールを摂取したときに(日本酒1日4合以上を毎日)、アルコールが尿酸の代謝を促進させて尿酸値があがることです。

 

 

なお、お酒に含まれているプリン体自身の量は、体内の尿酸プールの量に比べて少ないのでほとんど影響はありません。ビール大瓶633㏄中に、プリン体は32.4㎎しか含まれていません。

 

 

なお適量のアルコールならストレスが解消され尿酸値を下げます。(適量の目安:日本酒、焼酎で1日1.5合程度、ビール約750㏄、ワイングラス2杯、焼酎のお湯割りコップ2杯)

 

 

4 激しい運動は尿酸を上昇させますが、軽い有酸素運動は大丈夫です。

 

 

5、下記のプリン体が多い食品はさすがに大量にはとらない方がいいでしょう。しかし、日常的な食生活の中では、プリン体を気にするほどのことはなさそうです。下記の如く食事由来の尿酸は約100mgで、一日に生産される総量約700mgに比し少ないからです。

 

 

 

☆プリン体の多い食品

 

 

(1)きわめて多い(100g中、300㎎以上)鶏レバー、白子など

 

 

(2)多い(100g中、200~300㎎)豚レバー、牛レバー、かつお、まいわし、大正えびなど

 

 

 

☆尿酸の生成と排出

 

一日で産生される尿酸の量 700㎎

 

・ 食事から摂取 約100㎎

 

・ 体内でプリン体が利用された後に分解され、尿酸が生じる経路 約600㎎

 

 

 

☆一日で排出される尿酸の量 700㎎

 

・ 尿から排泄 約500㎎

 

・ 汗や便から排泄 約200㎎

 

 

 

☆尿酸の体内プール 約1200㎎

 

・ 健康な人の体内には、つねに1200㎎程度の尿酸がプールされています。

 

 

 

尿酸は、このように毎日、生産と排泄を繰り返しながら、一定量を保っています。しかし、尿酸の排泄がうまくいかなくなったり、尿酸が体内で作られすぎると、尿酸値が上がります。

 

 

 

 

 

「プリン体」について補足です。江部医師の記事で、

 

 

 

>『尿酸は3分の2が腎臓から、3分の1が腸から排出される』

 

 

 

…という話がありましたが、食事から摂取したプリン体は、「尿酸」に変わらずに排泄される…という説があります。

 

 

 

 

『熱血ナースMrs.GAGAのダイエット支援ブログ!!〜低糖質に愛をこめて〜 尿酸値と血糖値』より引用

 

 

食べ物から吸収されたプリン体の多くは、肝臓で処理され尿酸に変わると思われていましたが、研究が進み、食べ物由来のプリン体は、腸で分解されて尿酸に変わることなくそのまま排出されることがわかってきました。

 

 

 

 

 

 

 

さらに、尿酸値が高くなる原因を紹介します。

 

 

 

それはインスリンです。

 

 

 

「インスリン」は血糖値を下げる働きがあります。

 

 

 

血糖値が上がった時に大活躍するホルモンなのですが、実は、インスリンには「尿酸」の排泄を抑制する働きもあるのです。

 

 

 

 

 

血糖値の上昇

 

 

インスリンの分泌

 

 

尿酸の排泄を抑制

 

 

尿酸値が上昇

 

 

 

 

 

『熱血ナースMrs.GAGAのダイエット支援ブログ!!〜低糖質に愛をこめて〜 尿酸値の高い方にも糖質制限はオススメです。』より引用

 

 

インスリンは、尿酸の排泄を抑制する働きがあります。つまり、糖質制限してインスリンの分泌を抑えたら、尿酸の排泄がスムーズになるということです。

 

 

忘年会といえばアルコールとおいしい食事!ですが、糖質制限を心がけていれば、尿酸はいつもより溜まりません。

 

 

 

 

 

血糖値が上がらなければ、インスリンの追加分泌は起きません。

 

 

 

血糖値を直接上昇させるのは「糖質」、間接的に上昇させるのは「タンパク質(糖新生)」です。

 

 

糖質制限をしているのに血糖値が高いのは、糖新生が原因かもしれません

 

 

 

 

気をつけなければならないのは前者です。

 

 

 

そして、3の「飲酒」で生じた「乳酸」も、尿酸の排泄を抑制する働きがありましたが、「糖質」も代謝しきれなければ「乳酸」を発生させます。

 

 

 

糖質の摂取は、尿酸の排泄を抑制する「インスリン」と「乳酸」の発生のリスクがあるわけです。

 

 

 

 

肉食は尿酸値が上がる条件が揃っていましたが、それ以外の食事でも尿酸値が上がる条件が揃っているようです。肉ばかりを叩いている場合ではありません。

 

 

 

タンパク質でも「糖新生」によって血糖値が上がれば同じ事なのですが、糖質の摂取による血糖値の上昇の方が酷いケースが多いので、先にこちらを注意した方が良いです。

 

 

 

スポンサーリンク

 

 

 

プリン体と糖質の組み合わせ

 

 

ところで、「タンパク質&脂質」に「糖質」を組み合わせる「緩い糖質制限」は慢性疾患の原因になります。

 

 

 

しかし、「糖質」を組み合わせない「厳しい糖質制限」は健康的になります。

 

 

 

この2つは全く違う結果になるにも関わらず、「タンパク質&脂質」に「糖質」を組み合わせる「緩い糖質制限」の結果を理由に、「厳しい糖質制限」まで危険であるようにイメージ工作がされています。

 

 

 

【脂質+タンパク質】は良くて【糖質+脂質+タンパク質】が良くない理由

 

 

 

「組み合わせ」が悪いのに「単体」を悪いかのように言う…「プリン体」もその流れと似ているので、胡散臭いです。

 

 

 

 

『熱血ナースMrs.GAGAのダイエット支援ブログ!!〜低糖質に愛をこめて〜 尿酸値の高い方にも糖質制限はオススメです。』より引用

 

 

以前もお伝えしましたが、尿酸はコレステロールと同じで、食事性のものより身体で作られる方が多いのです。

 

 

 

プリン体の多い食品をことさらに避けることは、余り意味はありません。

 

 

 

プリン体の多い食品は栄養価も高いこともお伝えしました。むしろ、食べすぎない程度に食べることをオススメします。

 

 

 

プリン体の多い食品と、糖質の多い食品の組み合わせが最悪なのです。ついでに悪い油(劣化したサラダ油や加工食品に多く含まれるトランス脂肪酸)を使った揚げ物などと組み合わせたら、

 

 

 

「糖化→酸化→炎症」と痛風への道まっしぐらです。

 

 

 

 

 

「プリン体」を分解してできた「尿酸」は、単体だけの問題ではなく、「炎症」が関係しているみたいです。

 

 

 

『医師水野のブログ 尿酸値と糖質制限』より引用

 

 

また実際に尿酸値が12でも発作が起きない方もいれば、尿酸値7をきった6.8でも発作が起きる人もいます。

 

 

この違いは何でしょうか?

 

 

 

ガイドライン的には尿酸値で判断します。

 

 

この違いが説明できません。

 

 

 

そして、起こっている事から逆に考えれば、尿酸は高いだけでは発作は起きない、という考えが導き出されます。

 

 

 

では、尿酸値12で発作が起きない人はどんな状況でしょうか。

 

 

 

これは「炎症」が鍵になると考えます。炎症についてはコチラ。

 

 

 

「炎症」が尿酸を結晶化させ、痛風発作を起こす引き金である可能性があります。

 

 

 

あくまで可能性ですが、信憑性はあります。

 

 

 

酸性食品を食べようが、糖質の多いアルカリ性食品を食べようが、尿酸値が上がる可能性があるわけですから、問題は「尿酸値が高い事」よりも、「炎症」や「結晶化」にある気がします。

 

 

 

で、「炎症」といえば糖質です。

 

 

 

炎症と自己免疫疾患について分かりやすく説明してみた

 

 

 

 

尿酸値が上がる原因は1つではないので、状況を観察して、原因に合った対処をするべきですね。

 

 

 

尿酸が結晶化する事で生じる「痛風」も、本当の原因を改善する必要があります。

 

 

 

 

スポンサーリンク

 

 

痛風の本当の原因

 

 

あまり知られていない「痛風」の原因を紹介します。

 

 

『医療法人社団楡樹会 稲毛エルム歯科クリニック 痛風の本当の原因』より引用

 

 

尿酸はプリン体から合成されることから、プリン体を多く含む食事を控えるよう、医師から指導されることがあります。

 

 

プリン体とは核酸の成分であるアデニンやグアニン、電子伝達系で補酵素として働くNAD(ナイアシン)、FAD(ビタミンB2の誘導体)など、生体にとって必須の栄養素が含まれます。ですからプリン体を制限することは、様々な栄養欠乏をもまた引き起こすことになるのです。

 

 

 

そもそも、痛風の原因がプリン体の過剰摂取というのは迷信です。プリン体の摂取を控えることで痛風を予防することはできませんし、痛風の人がプリン体を控えても、症状が改善することはありません。

 

 

 

(中略)

 

 

 

尿酸は腎臓で尿に排泄されます。痛風のほとんどは、腎臓での尿酸の排泄障害によって起こります。

 

 

 

腎臓はなぜ尿酸をうまく排泄できなくなるのでしょう?

 

 

 

それは、腎臓が糖化することによって機能障害が起こるからです。

 

 

 

腎臓の糖化に特に関係していると考えられているのが、果糖です。果糖はブドウ糖のおよそ7~10倍も糖化能力が高く、強力に細胞を傷害します。

 

 

 

また果糖の大量摂取は、肝臓で無機リン酸の欠乏を引き起こし、ATPの枯渇と高尿酸血症を引き起こします。

 

 

 

さらに果糖は血液のpHを酸性(アシドーシス)にすることによって、尿酸の結晶化を促進します。果糖が痛風の原因となるのなら、糖尿病患者に痛風が多いことも理解できます。

 

 

 

痛風の本当の原因はプリン体では無くて果糖であり、果糖を多く含む物(砂糖や異性化糖)の過剰摂取が痛風を引き起こすのです。

 

 

甘い物はむし歯だけでなく、さまざまに体を蝕むのですから、一切摂らないようにすべきなのです。

 

 

 

 

痛風の本当の原因は、「果糖」による腎臓の糖化…。

 

 

 

先ほど、腸からの尿酸の排泄機能が低下する…という話がありましたが、糖化によって「腎臓の尿酸の排泄障害」が起こるなら、腸も同じように、糖化の影響で尿酸の排泄障害になる可能性はあります。

 

 

 

 

尿酸値が高くても、必ず痛風になるわけではないのは、別の要素があるからなんですね。

 

 

 

ちなみに、痛風について色々なネットの記事や本を読みましたが、「腎臓の糖化」について触れられているものは、ほとんどありませんでした。

 

 

 

他の疾患と同じで、やはり「糖化による害」は触れられないようです。

 

 

 

「糖化による害」を誤魔化す為に、別の食品や栄養を悪者にする例は、いろんな疾患で見られるのですが、「プリン体」もその1つでしょうか…。

 

 

 

 

「プリン体の多い食品」を控えることで重要な栄養が欠乏するなら、制限はしない方が良いです。

 

 

 

また、「食品由来のプリン体」は腸で分解されて「尿酸」にならずに排泄される…という説が本当なら、安心して摂取する事ができます。

 

 

 

 

ここまでを振り返ります。

 

 

 

  • 尿酸値が上がる原因は様々

 

 

  • 尿酸値が高くても痛風発作が起きるとは限らない

 

 

  • 痛風の原因はプリン体ではなく腎臓を糖化させる果糖

 

 

 

 

尿酸値が上がる原因も色々考えられますし、尿酸値が高くても痛風発作が起きるとは限らず、さらに痛風の原因である腎臓の糖化はあまり知られていない…

 

 

 

 

患者数も多く、完治しずらい…となっているあたり、「尿酸」と「それにまつわる疾患」は胡散臭いと感じます。

 

 

スポンサーリンク

 

 

動物性食品の摂取による尿酸値の結果はバラバラ

 

 

 

ここで、「動物性食品の摂取」と「尿酸値」は関係ないのでは?…と思われるような話を紹介します。

 

 

 

まず、以下は「肉を多く食べても尿酸値が上がらないケース」です。

 

 

『痛風情報局 尿酸値とは?尿酸値を下げる方法』より引用

 

 

イヌイットの人たちには痛風がいないそうです。

 

 

彼らは食事の中の肉食の割合が非常に高いですがそれでも痛風にならない(尿酸値が上がらない)のは、彼らの環境に適応するための体質の進化もあることながら、動物性たんぱく質が尿酸値を上げることは無いということを示しているのではないでしょうか。

 

 

 

 

一方で、「動物性食品」を殆ど摂取していなかった明治以前の日本には、痛風患者はほとんどいなかったそうです。

 

 

 

ポルトガル人宣教師のルイス・フロイスや、ドイツ人医師のベルツによってその記録が残されています。

 

 

 

 

動物性食品をたくさん食べても痛風にならない「イヌイット」、動物性食品をほぼ食べなくて痛風にならない「明治以前の日本人」の例を紹介しました。

 

 

 

ちなみに、イヌイットは人種的には日本人と同じモンゴロイドです。

 

 

 

このような事実から、「尿酸」と食品はあまり関係ないような気もしてきます。

 

 

 

 

 

一応、2015年の春から「1日10g以下のスーパー糖質制限」をしている私の尿酸値も紹介しておきます。

 

 

 

血液検査を始めたのは、2017年の1月からです。それ以前は検査をしていないので分かりません。そして、検査をした時に前回の結果を聞いています。

 

 

 

 

だいたい3ヶ月に1回、「フェリチン」目的で検査をしています。「尿酸」を気にした事は一度もなく、今回改めて見たところ、かなりバラつきがあります。

 

 

 

食事内容はほとんど変わっておらず、違いと言えば3ヶ月ごとにサプリの種類を増やしている事くらいです。なので規則性は感じません。

 

 

 

では、新しい順からです。

 

 

 

2018年の3月が6.9。この日から「マグネシウム(ビタミンD、亜鉛、カルシウム入り)」を開始。

 

 

 

 

 

2017年の12月が4.7。この日から「ビタミンB50コンプレックス」と「ベンフォチアミン」を開始。

 

 

 

 

 

2017年の9月が5.1。この日から「ビタミンC」と「ビタミンE」を開始。

 

 

 

 

 

2017年の5月が4.3。この少し後から「ナイアシン」を開始。

 

 

 

 

 

2017年の1月が5.0。この日から「鉄」を開始。

 

 

 

 

 

 

私の食事は、肉、卵、魚…と、動物性食品のオンパレードです。糖質10g以下なので、野菜はほとんど使えません。

 

 

 

 

でも、「高尿酸血症」は7.0 mg/dl以上なので、いまのところ問題ありません。

 

 

 

 

閉経前の女性の場合、尿酸の排泄を促す「エストロゲン(女性ホルモン)」のお陰で、尿酸値は低くなりやすいようなので、男性だったらもう少し高いかもしれません。

 

 

 

 

次回は、何故人間には「尿酸を分解するウリカーゼ」がないのか?について考えます。

 

 

動物性食品の摂取で尿酸値が上がる理由と、尿酸のメリットについて考えてみたへ続く

 

 

スポンサーリンク

酸性食品とアルカリ性食品の定義と影響について分かりやすく説明してみた

 

「植物性の食品」に対して健康的なイメージを持たれている方は多いです。

 

 

 

しかし、穀物や野菜や果物には、体にダメージを与える糖質が多く含まれています。

 

 

 

その上、人体を構成しているタンパク質の質や量も、動物性食品に比べて劣ります。

 

 

 

従って、このブログでは「植物性の食品を控えて、動物性の食品を摂取する方が健康的だ」…と、主張してきました。

 

 

 

 

これは常識に反する意見なので、「動物性食品は血液を酸性化させる」とか、「肉は血液をドロドロにするのではないか」といった心配をされる方がでてきます。

 

 

 

よく、肉食は血液を酸性化させるとか、血液がドロドロになるとネットでは書かれています。これに関してはどうお考えでしょうか。

 

 

血液が酸性化するのは、乳酸が蓄積するからで、でもそれは糖を取るほうが乳酸が蓄積して酸性化しやすいと思うし、血液がドロドロになるのは血中コレステロールが多くなるからで、でも摂取したコレステロールは血中コレステロール値とは関係ないって聞きますし・・・

 

 

 

こう考えると肉食は問題ないと感じるのですが、肉は酸性食品とも言われますよね。

 

 

ここら辺はどう解釈しておられるのでしょうか。よろしくお願いします。

 

 

 

コレステロールに関しては、以下の記事を参考にして下さい。

 

科学や論文のインチキはコレステロールが教えてくれる

 

 

 

 

このての質問はかなり多いです。

 

 

 

 

私も糖質制限をするまでは「バランスの良い食事」をしていましたし、食べる割合としては野菜の量が非常に多かったです。「肉を食べたら、野菜は倍食べた方が良い」…と大真面目に思っていました。

 

 

 

 

それは、「肉は酸性食品で、野菜のほとんどはアルカリ性食品だ」という考えが影響していたからでもあります。

 

 

 

なので、同じ心配をする人の気持ちはよく分かります。

 

 

 

本記事では、「食品」と「体のpH」の関係について細かくみていきます。

 

 

 

スポンサーリンク

 

 

食品と体のpHは定義が違う

 

 

 

「食品の性質」が、そのまま「体の性質」に影響を与えるのかどうか

 

 

 

 

…という話をする前に、先に理解しておくべき事があります。

 

 

 

健康や栄養の話題では、「酸性」、「アルカリ性」…といった単語が頻繁に登場します。

 

 

 

しかし、「の酸性、アルカリ性」という定義と、「食品の酸性・アルカリ性」という定義は違います。

 

 

 

 

この2つは、以下の様に判断基準が違うので間違えないようにして下さい。

 

 

 

 

体・・・・酸性・アルカリ性(pHで判断する)

 

食品・・・酸性・アルカリ性(pHで判断しない)

 

 

 

 

前者は「pH」で判断しますが、後者は「食品そのもののpH」で判断しているわけではありません(これについては後で説明します)。

 

 

 

で、このうちよく聞くのが「体が酸性化する」という言葉です。

 

 

 

まずは、分かりやすいこちらの説明からします。

 

 

スポンサーリンク

 

 

体のpHは均一ではない

 

 

 

体が酸性かアルカリ性か…の判断は、単純に「pH」で判断します。

 

 

 

この点に関してはシンプルなのですが、注意も必要です。

 

 

 

「〇〇によって体が酸性化する~」…という話はいたるところでされています。しかし、この主張は2通りあります。

 

 

 

 

  • 酸性食品を食べると血液が酸性化する

 

 

 

  • 酸性食品を食べると尿が酸性化する

 

 

 

 

「血液」か「尿」かの違いです。この2つは違いますし、同じように扱うと混乱するので気をつけて下さい。

 

 

 

 

体のpHは全て同じではありません。以下の図を見て下さい。数字が低いと「酸性」、高いと「アルカリ性」です。

 

 

 

『水素と電子の生命 / 著者:生体物理医学者 山野井昇(138p)』より引用

 

 

 

 

 

 

体液の働きによって、「正常なpH」が違います。

 

 

 

 

過去に癌についての記事中で、「乳酸」によって酸性化するとヤバイ…と書いたのですが、それは血液のpHの事です。

 

 

 

 

【注意】癌の本質を理解していないと症状が悪化する治療法を選択します

 

 

 

 

そして、以下が「血液のpH」と「健康状態」です。ちなみに、本の図に記載されている「血液のpH」は、7.36~7.44になっていました。

 

 

 

 

  • pH 7.35 ~ pH 7.45 ・・・正常

 

  • pH 7.3 以下 ・・・ミトコンドリアの機能低下

 

  • pH 7.1 以下 ・・・死の危険

 

 

 

『ナースプレス アシドーシス・アルカローシス』より引用

 

 

 

 

このように、人間が生きていく為には「血液のpH」を、狭い範囲の中で維持する必要があります。

 

 

 

ですが、血液と、尿のpHは別です。

 

 

 

今後、「酸性に傾く」というセリフが出た時は、どこの体液について話しているのかに注目するようにして下さい。

 

 

 

よく「体を酸性に傾ける」と表現されていますが、部位によってpHが違うのに「体のどの部分か」がハッキリ書かれていない文章は多いからです。

 

 

 

スポンサーリンク

 

 

「血液が酸性化する」と「尿が酸性化する」の違い

 

 

 

では次に、よくある「酸性食品によって血液が酸性化する」という意見と、「酸性食品によって尿が酸性化する」という意見の特徴を書いておきます。

 

 

 

 

肉(酸性食品)を食べると血液が酸性化すると主張しているケース

 

 

 

 

  • 断食、ヨガ、玄米菜食、陰陽論を支持している

 

  • 玄米菜食で生じるであろう大量の乳酸による血液の酸性化には触れない

 

 

 

 

ちなみに、彼らは「肉食によって血液がドロドロになる」と語る事が多いです。これは質問をされた読者さんも気にされていたので、ちょっとここで回答しておきます。

 

 

 

「血液ドロドロ」の主な原因は高血糖です。

 

 

 

糖質の多い穀物、野菜、果物の摂取によって起こります。肉は直接は血糖値を上げません。

 

 

 

『横ちゃんのきまま日記 血糖値の上昇が免疫力の低下を招く』より引用

 

萩原 敦さんのFBより転載

 

~血糖値の上昇が免疫力の低下を招く~
(血糖値の数値から客観的な免疫力評価の数値を探る)

 

 

英語圏の文献で、我々の免疫力の客観的な評価をする場合に、lymphocytic index(リンパ球指数)とかphagocytic index(食細胞指数)なる指標を用い、血糖値の上昇値と関連付けて、記述されていることをよく見かける。

 

 

この「食細胞指数」や「リンパ球指数」という言葉自体、我が国ではあまり一般的ではないようです。

 

 

(中略)

 

 

たとえば、

 

 

「血糖値が120を超えると食細胞指数的な免疫力の評価をすると、約75%の免疫力がダウンする。」

 

 

この説は、ライナス・ポーリング博士が、はじめて世に知らしめた説だそうです。

 

 

ポーリング博士も研究に値する人物です。後日、改めて、彼についての言及もします。

 

 

つい先ごろ、比嘉さんという方のFBで、高血糖の赤血球を映像にして投稿されていましたが、その内容は、ひじょうに素晴らしいもので、血糖値が上昇すると、赤血球同士がくっついて、「連携を組み」、血管の中で、あろうことか、「血流をせき止め」、「血流を立ち往生」させることを示していました。

 

 

 

となると、免疫力の要である「白血球(食細胞やリンパ球他)」も「赤血球の通せん坊」にあい、免疫力を発揮できなくなる云々と述べていました。

 

 

 

この血糖値120と言う数値が、血流を悪化させる「赤血球通せん坊」作戦が、効果を発揮し、顕著になる数値(ボーダーライン)なんだろうと思います。

 

 

 

 

そして、「血液がドロドロになる」という定義がこちらに分かりやすく書かれています。

 

 

 

 

『テラヘルツ健康有効波が見つかった!! / 共著:久保田享、荒木賢治』より引用

 

 

 

まず、「サラサラ」や「ドロドロ」とは血液の状態を表している言葉であり、血液をイメージしやすいように作られた表現です。

 

 

テレビや雑誌などのメディアによって、分かりやすい印象を与える言葉として使われたのが始まりです。

 

 

血液が「サラサラ」とは、赤血球の変形能力が高い状態、すなわち正常な赤血球の状態のときのことを指します。

 

 

血液が毛細血管の中に、状態を変形させながら血管の中をスルスルと流れることを意味しています。

 

 

また、血液が「ドロドロ」とは、赤血球の変形能力の低下やその他の原因などにより、毛細血管に血液がスムーズに流れない状態(ルロー状態)を意味します。

 

 

血液がドロドロになると血流が悪くなり、細胞内に酸素不足や栄養不足などが生じて、次のようなさまざまな症状が起きてきます。

 

 

 

・疲れやすい、疲れがとれない

 

・足のむくみがとれない

 

・肩こり、腰痛がひどい

 

・手足の冷えが酷い

 

・寝付きが悪く、よく眠れない

 

・生理痛がひどい

 

・肌あれが続いている

 

・抜け毛が多い

 

・目の充血、クマができやすい

 

 

 

(89~91p)

 

 

 

ここで、「肉食が血液をドロドロにする」可能性についてもお話しておきます。

 

 

 

赤血球の変形機能が正常だと「サラサラ」、機能が低下すると「ドロドロ」です。

 

 

 

この赤血球の変形機能が低下する原因に「マグネシウム不足」があります。

 

 

 

肉を食べると、その代謝にマグネシウムが必要です。

 

 

 

その為、肉を過剰摂取するとマグネシウムが不足します。糖質制限をしている人で、こむらがえりが起きたり、便秘になる事があるのはこの為です。

 

 

 

 

マグネシウムが不足する事によって、赤血球の変形能が低下して、血液がドロドロになる事ならあると思います。

 

 

 

また、赤血球には集まる傾向があります。

 

 

 

マグネシウムが不足すると、この傾向が高まって、より集まりやすくなるのです。こうなると血小板が血栓を作りやすくなります。

 

 

 

 

  • 赤血球の変形能の低下

 

  • 赤血球の凝集能の亢進

 

 

 

 

で、マグネシウムは骨に多く含まれています。

 

 

 

骨を食べずに肉だけを食べれば、マグネシウム不足で血液がドロドロになる…というなら間違いではありません。

 

 

 

しかし、本来であれば動物性食品だけでも摂取できるので、「肉が悪い、動物性食品が悪い」というのは適切ではありません。骨を食べる習慣がない事が問題なので、「動物性食品の全体を食べない事によるマグネシウム不足が悪い」と言うべきです。

 

 

 

 

一応言っておくと、マグネシウムは、「過剰な糖分の摂取」、「食品添加物の摂取」、「重金属曝露」によっても不足します。

 

 

 

つまり、肉を制限していなくても誰がなってもおかしくありません。

 

 

 

 

酸性食品で酸性化するのは尿のpHと主張しているケース

 

 

  • 高尿酸血症、痛風等の対策

 

 

 

 

スポンサーリンク

 

 

酸性食品とアルカリ性食品の定義と歴史

 

 

 

ここまでは、「のpH」についてと、「pHは同じではないので、どこの場所の性質について述べているのか把握するべき」だと説明してきました。

 

 

 

ここからは「食品の酸性・アルカリ性」の定義について説明します。

 

 

 

冒頭でも言いましたが、「体の酸性・アルカリ性」と「食品の酸性・アルカリ性」は判断基準が違うので気をつけて下さい。

 

 

 

食品の性質が、酸性かアルカリ性かは、「食品そのもののpH」ではなくて「含まれているミネラル」で判断しています。

 

 

 

『痛風治療ガイド アルカリ性食品って一体何?積極的に摂るべき理由とは?』より引用

 

 

 

アルカリ性や酸性と聞くと、学校で習ったpH(ペーハー)を連想します。

 

 

 

しかし、アルカリ性食品か酸性食品かの判定は食品そのもののpHではなく、食品に含まれる「ミネラル」が酸性かアルカリ性かで判断します。

 

 

 

つまり、リンや硫黄を含む食品は「酸性」、ナトリウムやカリウム、カルシウム、マグネシウムを含む食品は「アルカリ性」となります。

 

 

 

よく「酸性食品の摂り過ぎで血液が酸性になるからよくない」などと聞きますが、それは間違った情報です。

 

 

 

酸性食品やアルカリ性食品を食べたからといって血液のpHがどちらかに傾く事はありません。

 

 

 

しかし、尿は食べる食事内容によってpHが変化します。

 

 

 

尿が酸性に傾くほど尿酸が排泄しにくくなりますので、高尿酸血症の人はアルカリ性食品を積極的に摂る必要があります。

 

 

 

 

「酸性食品」がpHを酸性に傾けるのは、血液ではなく尿だと書かれています。

 

 

 

× 酸性食品は血液のpHを酸性に傾ける

 

〇 酸性食品は尿のpHを酸性に傾ける

 

 

 

 

その「酸性食品」の判断はこうです。

 

 

例えば、梅干を「リトマス試験紙」で調べると赤くなるので、科学的には「酸性」です。

 

 

 

しかし、梅干を燃焼させると、残ったミネラルはアルカリ性を示すので、栄養的には「アルカリ性」になってしまいます。

 

 

 

 

判断基準が違うのなら呼び方をなんとかしろと言いたくなります。実に紛らわしいです。

 

 

 

あえて混乱するような名称や定義のままにしたり、曖昧にしてイメージで語られる事が多いので、インチキ臭いです。

 

 

 

そして、以下が「体内に入ると酸性を示すミネラル」と「体内に入るとアルカリ性を示すミネラル」です。

 

 

 

 

酸性・・・塩素・リン・硫黄

 

 

 

アルカリ性・・・カルシウム、マグネシウム、ナトリウム、カリウム

 

 

 

 

ちなみに、測定方法はこうです。

 

 

 

 

『Wikipedia 酸性食品とアルカリ性食品』より引用

 

測定は、食品を燃やした灰を水中に入れて溶出成分を含む水溶液を調製し、その水溶液のpHを計測する。

 

 

 

「食品そのもののpH」ではなく、「燃やした灰を溶かした水溶液のpH」を測るのです。

 

 

 

この方法で食品を測定するとこうなります。

 

 

 

アルカリ性食品

 

 

野菜(ほうれん草、ゴボウ、サツマイモ、ニンジン、里芋、キュウリなど)、果物(メロンなど)、海藻(ひじき、ワカメ、昆布等)、キノコ、大豆製品、梅干し、牛乳などナトリウム・カルシウム・カリウム・マグネシウムを含む食品

 

 

 

酸性食品

 

 

肉類(豚肉、牛肉、鶏肉など)、魚類、卵、砂糖、穀類(米、酢、小麦等)など
硫黄やリンを多く含む食品

 

 

 

さらに以下のように記述されています。

 

 

 

2010年時の管理栄養士の国家試験を目標とした教科書である『新しい臨床栄養学』の5版では、主に動物性食品を酸性食品に、主に植物性食品をアルカリ性食品に分類している。

 

 

 

肉を悪者にしたい人達が大喜びしそうな分類ですね。

 

 

 

ですが、矛盾もあります。

 

 

 

「砂糖」は乳酸を発生させるから酸性食品の扱いになっています。

 

 

 

女子栄養大学出版部の『酸とアルカリ』では、砂糖は体内で酸性の乳酸を作るという根拠によって酸性食品に分類している。

 

 

 

「乳酸が血液を酸性に傾ける」ということを知っているからこそ、「砂糖」を酸性食品のカテゴリーに入れているのです。

 

 

 

しかし、だとしたら全体的におかしな話になります。

 

 

 

 

ブドウ糖(糖質)を分解する時に、代謝しきれずに生じた燃えカスが「乳酸」です。

 

 

 

「アルカリ性食品」に属しているサツマイモ、ニンジン、里芋も高糖質なので、代謝し切れなければ、乳酸を発生させる食品です。

 

 

 

ちなみに、それぞれの糖質量です。

 

 

 

 

  • サツマイモの糖質・・・100gあたり29.7g

 

  • ニンジンの糖質・・・100gあたり6.5g

 

  • 里芋の糖質・・・100gあたり11g

 

  • ご飯の糖質・・・茶碗一杯(約150g)あたり55g

 

 

 

ご飯ほどではないですが、根菜類は糖質が多いです。

 

 

 

 

それなのに何故、「乳酸=砂糖だけ」みたいな扱いなのでしょうか。

 

 

 

 

乳酸が発生するのは砂糖だけではありません。穀物も、野菜も、高糖質なので、同じ理由で血液を酸性化させる食品です。

 

 

 

この半端な判断基準も胡散臭いです。

 

 

 

そして、「食品の酸性・アルカリ性」の定義の出処がこちらです。

 

 

 

スイスの生理学者、グスタフ・フォン・ブンゲ(ドイツ語版)による、肉を食べると含硫アミノ酸が硫酸に変化し、体組織を酸性にするのでアルカリ性のミネラルを摂取する必要があると主張し、日本でも酸性・アルカリ性の議論が行われるようになった。

 

 

日本では、1990年代には主張を裏付ける実験を引用しないまま、分類は無意味だという主張が重んじられた。

 

 

 

高橋久仁子、左巻健男は、無意味だという説を一般書にて大衆に示してきた。

 

 

 

一方2007年に世界保健機関(WHO)は、タンパク質中の含硫アミノ酸、メチオニン、システインの酸が骨のカルシウムを流出させるため骨の健康に影響を与えるため、カリウムを含む野菜や果物のアルカリ化の効果が少ないときカルシウムを損失させるため骨密度を低下させると報告したし、2010年の日本の管理栄養士の国家試験のテキストはこの分類を掲載している。

 

 

 

医学的な研究は、骨や、高齢者の筋肉量の保存に関わり、尿路結石、痛風との関係を示してきた。

 

 

 

肉に多く含まれている「メチオニン」、「システイン」の酸について書かれています。これがあるから、肉は食品としては「酸性食品」に属することになります。

 

 

 

 

ここで語られている「酸」とは、アミノ酸を分解したの性質、つまり、「食品の栄養的」には酸性ということだと思います。

 

 

 

 

ちなみに、「持っている電荷」によってアミノ酸を分類する時は、以下の3つに分けられます。

 

 

  • 中性アミノ酸

 

  • 酸性アミノ酸

 

  • 塩基性アミノ酸

 

 

 

この分類の方法では、分解する前だからなのか、「メチオニン」や「システイン」は「中性アミノ酸」になっています。

 

 

 

ここで、肉を食べたら酸性食品になるとする根拠の部分を要約しておきます。

 

 

 

 

 

肉に多く含まれている含硫アミノ酸を摂取する

 

 

硫酸に代謝される

 

 

体組織を酸性化させる

 

 

 

次は、問題になっている「含硫アミノ酸」に焦点を当てます。

 

 

スポンサーリンク

 

 

肉に多く含まれている含硫アミノ酸とは

 

 

 

「タンパク質」はアミノ酸が繋がってできています。そのアミノ酸は20種類です。

 

 

 

 

で、「含硫(がんりゅう)アミノ酸」とは、「構造の中に硫黄原子があるアミノ酸」の事です。

 

 

 

 

だから、む・黄・アミノ酸と書きます。

 

 

 

 

例えば、メチオニン、システイン、ホモシステイン等があります。

 

 

 

 

このうち、「メチオニン、システインなどの酸」が骨のカルシウムを流出させる…という事だそうです。

 

 

 

 

『医療法人 弘鳳会 専門医のコラム 牛乳と骨粗鬆症③』より引用

 

 

牛乳は骨粗鬆症をかえって助長!

 

 

タンパク質を構成するアミノ酸の中に、メチオニン・システインなどの含硫アミノ酸があり、動物性タンパク質は植物性タンパク質に比べてこれらの含硫アミノ酸を多く含みます。

 

 

含硫アミノ酸は分解されて最終的に硫酸イオンとなり、体液の酸・塩基平衡を酸性側に傾けるのです。

 

 

 

酸性になった体液をアルカリで中和して酸・塩基平衡を保たなければならず、中和に用いられるアルカリ源はカルシウムです。

 

 

 

体内のカルシウムの99%は骨に存在します。中和にはもっぱら骨のカルシウムが使われることになります。

 

 

 

実際、動物性であれ植物性であれ、タンパク質の摂取量が増えると尿中に排泄されるカルシウムが増えることは、1970年代に行われた代謝実験で報告されています。

 

 

 

こちらは「体液」が酸性化すると書いてあります。どの体液でしょうか。

 

 

 

一方、以下では「尿」が酸性化すると書いてあります。

 

 

 

『コンディショニングのスポーツ栄養学 著者: 樋口満』より引用

 

 

動物性たんぱく質(肉、魚など)には含硫アミノ酸(メチオニンやシステイン)が多く含まれている。

 

 

動物性たんぱく質を大量に摂取すると、アミノ酸の分解により、尿中のリン酸塩、硫酸塩が増加し、尿が酸性化する。

 

 

そのため、カルシウム再吸収が抑制され、尿中カルシウムが増加し、尿路結石や骨粗鬆症などのリスクも高まる。

 

 

 

骨のカルシウムを溶かすのは、体を血液の酸性化から守る為で、体の防衛システムの一種です。

 

 

 

最後は血液が酸性化する事について書かれています。ということは、「尿」と「血液」の両方を酸性化するのでしょうか…。

 

 

 

ハッキリしませんね。

 

 

 

 

血液が酸性化する事によるカルシウムの変化

 

 

 

酸性化するのがどちらなのか曖昧なのですが、

 

 

 

とりあえず、血液が酸性化して、それを中和する流れを説明します。

 

 

 

 

血液が酸性化する

 

 

骨からカルシウム(アルカリ性)を溶かして(脱灰)血液に送り込む

 

 

血液を中和する

 

 

カルシウムは再び骨に戻る(再石灰化)

 

 

 

 

 

「脱灰 = 再石灰化」であれば問題ありません。

 

 

 

しかし、度が過ぎると不具合が起きます。

 

 

 

ずっと酸性だと、「脱灰 > 再石灰化」状態になります。

 

 

 

すると、大量のカルシウムが血液に留まり慢性化します。そうなると、骨のカルシウムは減りますし、さらには溶けたカルシウムが血管に付着して「動脈硬化」の原因になります。

 

 

 

 

そして、それ以外にも様々な慢性疾患の原因になります。酸性化するのは良くありません。

 

 

 

 

ただし、この理屈は、あくまでpHを7.35 ~  7.45に保たなければならない「血液」が酸性化した場合の話です。

 

 

スポンサーリンク

 

 

どこを酸性化するのかが曖昧

 

 

 

「含硫アミノ酸」を分解してできた「硫酸」は、血液によって運ばれる物質の一つなのですが、それで血液が酸性化する…という部分の具体的な説明はみつかりません。

 

 

 

「硫酸」について書かれている事は、例えば以下です。

 

 

 

『よくわかる生理学の基本としくみ / 著者:札幌医科大学 医学部教授 當瀬規嗣』より引用

 

 

 

ゴミは水に溶かして

 

 

 

細胞が出す代表的な代謝産物には、酸素の消費の結果出てくる二酸化炭素のほか、タンパク質やアミノ酸を分解することで生じる尿素や硫酸など、それに、DNAやATPなどに使われる核酸を分解して生じる尿酸などがあります。

 

 

これらの物質は、細胞から血液に出されてきます。

 

 

したがって、ゴミは、血液によって体中から回収されているわけです。

 

 

血液は、なんと、ゴミ収集車の役わりをしているのです。

 

 

血液は、あくまで収集をしているだけなので、どこかに捨てなければなりません。

 

 

一つのゴミ処理場は、肺です。ここで二酸化炭素がだされることを、第3章でお話しました。しかし、他の物質は、気体にならないので、肺からは出ません。

 

 

気体にならないゴミを除去するのが、腎臓の役わりです。つまり腎臓は、血液専用の浄化装置だということです。

 

 

 

(101~102p)

 

 

 

「細胞の代謝産物」がゴミ扱いである事と、その行方が説明されています。

 

 

 

「硫酸」が血液によって回収されることは確かですが、それによって血液が酸性化する…といった記述は見当たりません。

 

 

 

 

結果的に尿として排泄するから、血液のpHが影響を受けないのかもしれません。

 

 

 

『Wikipedia 尿』より引用

 

 

尿は血液中の不要物や有害物、新陳代謝の老廃物などを体外へ捨てるために腎臓で濾過されて生産される。

 

 

 

このため、身体状態を反映して水素イオン指数 (pH) や成分が変化することが知られており、内科の診断では主要な検査対象となる。

 

 

 

血液やリンパ液、組織液、細胞液などのpHは、ホメオスタシス(恒常性維持機能)によって通常pH7.4±0.05に維持されている。

 

 

 

一方、尿は体液ではないため、pHはある程度の範囲で変動する。

 

 

 

体内からミネラルを補充したり、尿に余分なミネラルを排出することで血液や体内のpHが保たれているので、骨や尿は摂取する食品の影響を受ける。

 

 

 

尿はpH4.4~8.0の範囲で変化する。

 

 

 

尿は体液ではない…ということは、酸性化するのが「体液」と記述されている場合は、「血液」の事だと受け取るべきなのでしょうか?

 

 

 

以下は、食べ物のpHは、血液には影響しないと書かれています。

 

 

『緑の中の小さな家 (Pure Food Pure Body) 『肉を食べたら、体が酸性になる』 のうそ』より引用

 

 

食べ物のPHは尿のPHには影響するが、血液のPHには影響しないのです。

 

 

血液のPHを一定に保っているということは、人間の体にとって非常に大切なことなのです。

 

 

もし、血中PH バランスが、正常値から外れてしまったら、あなたの細胞は動きを止めてしまい、すぐに死に向かってしまうのです。それゆえ、体はいくつものメカニズムを駆使して、体のPHバランスを制御しているのです。このことは、酸塩基恒常性と呼ばれています。

 

 

 

こういうわけで、幸運にも、私たちが食べる食べ物で、血液のPHバランスを変えるなんてことができるわけないのです。つまりは、食べ物は、血液のPHを変えることができない、以上!って感じですね。

 

 

 

でも、食べものは尿のPHを変えることができます。

 

 

 

それは、逆に、血液のPHを一定に保つために、体の制御システムが働き、尿から、余計な酸性物質を出しているからなのですね。

 

 

 

大きなステーキを食べて、数時間後には、体は、酸性物質を体のシステムないから排除するために、いつもより多くの酸性物質を尿から出しているであろうと考えられます。

 

 

 

言われていることとしては、尿のPHというものは、体全体的なPHバランスや、健康度を図るのには、ほとんど、指標にならないということです。

 

 

 

尿のPHというのは、食べ物だけではなくて、非常にたくさんの要因で変化するものなのです。

 

 

 

 

 

ここまでをまとめます。

 

 

 

  • 「食品の性質」によって酸性化するのは、「血液」ではなく「尿」

 

 

  • 「血液のpH」は、「食品の性質」によって左右されず、恒常性維持機能でコントロールされている

 

 

  • 「含硫アミノ酸」を代謝した時に発生する「硫酸」は体液を酸性化させるが、それがどこか曖昧

 

 

 

スポンサーリンク

 

 

含硫アミノ酸に関する情報は少ない

 

 

 

「肉を食べると酸性化する」…という話は、

 

 

 

「どこが酸性化するのか」という事と、「含硫アミノ酸」がポイントだと思います。

 

 

 

 

しかしながら、もっと具体的に書かれている情報が今のところ見つかりません。

 

 

 

 

ネットで検索すると、同じような事を書いている記事がいくつか見つかったのですが、「情報量」や「曖昧さ」や「話の流れ」が似ているので、元ネタが同じ可能性があります。

 

 

 

 

「どこが酸性化するのか」の説明は、紹介したように、情報源によってバラバラです。

 

 

 

また「含硫アミノ酸」と、分解して生じた酸についての情報はもっと少ないです。

 

 

 

 

Wikipediaにも、「含硫アミノ酸」についての記述はほとんどありません。なので、それを分解した成分の性質について探すのはもっと難しいです。

 

 

 

Wikipedia 含硫アミノ酸

 

 

 

 

今のところ、私が持っている生化学の本、図書館で借りた本を探してみても、「含硫アミノ酸の分解」について詳しく書かれていませんでした。

 

 

 

もっと難しい本や英語の情報なら書いてあるのかもしれませんが…。

 

 

 

 

私としては、もう少し具体的な事が知りたいです。

 

 

 

 

ただし、無駄に複雑な文章はインチキを誤魔化している可能性が高いので、「新聞が読める人であれば誰でも理解できる文章」で書いてある事が条件です。

 

 

 

 

 

「含硫アミノ酸は良くない」と主張している人達は、この状況で、一体どうやって元の情報を得たのか謎です。

 

 

 

多くの人が、軽々しく「肉は酸性食品だから食べ過ぎないようにしよう」と言っているので、もっと簡単に手に入る情報だと思っていました。

 

 

 

また、疑問もあります。

 

 

 

何故、20種類あるアミノ酸のうち、「含硫アミノ酸」を分解して生じた酸だけが強調されているのでしょうか?

 

 

 

アミノ酸は「含硫アミノ酸」だけではありません。

 

 

 

当然、肉を食べたら「含硫アミノ酸」以外のアミノ酸も食べる事になります。

 

 

 

 

「他のアミノ酸」が分解された後の性質はどうなるのかが気になります。

 

 

 

 

仮に「他のアミノ酸」が分解された時に、酸性ではなくアルカリ性だったら、「含硫アミノ酸」で生じる酸を中和できる事になります。

 

 

 

 

憶測ですが、「含硫アミノ酸」を分解して生じた酸だけが強調されるという事は、それ以外のアミノ酸を分解しても、そのような性質がないのかもしれません。

 

 

 

 

私はよく分からないものは無理に結論を出さない事にしています。

 

 

 

詳しい情報がなかなか手に入らないので、結論は先延ばしになりそうです。

 

 

 

「含硫アミノ酸」のデメリットについては、分かり次第書き加えていきます。

 

 

 

 

ただし、これで終わりではありません。

 

 

 

 

「動物性食品」の大量摂取に不安があったり、「高タンパク質」に抵抗がある人は多いので、現時点で分かる範囲で、この食生活が安全なのかどうかを、別の視点から考えてみます。

 

 

 

酸性食品の動物性タンパク質によって骨粗鬆症になる説の真相と、含硫アミノ酸のメリットへ続く

 

 

スポンサーリンク

アレルギーと抗体について分かりやすく説明してみた

 

 

虚弱体質とか、大病をしたことがない人でもなる身近な疾患があります。

 

 

 

「花粉症」や「アトピー性皮膚炎」等のアレルギーです。

 

 

 

なんと、日本人の3人に1人が何らかのアレルギーだそうです。

 

 

 

たかがアレルギー…と軽く考える方もおられるかもしれませんが、これは免疫システムの異常なので立派な病気です。

 

 

 

何故、近年こんなにアレルギーの人が増えてきたのかその理由を知るためには、アレルギーがどんなものなのか知っておく必要があります。

 

 

 

 

スポンサーリンク

 

アレルギーは免疫システムの異常

 

 

 

体には「免疫 めんえき」と言う仕組みが備わっています。「免疫」とはシステムの事で、イメージは防衛軍です。

 

 

 

「免疫」は、体に外敵(異物)が入って来たときに、それを「自分ではない異物だ」と認識してから攻撃をして体を守ります。

 

 

 

  • 外敵と自分の組織を正しく区別する

 

  • 外敵を攻撃して守る

 

 

 

免疫の仕組みについては、以下の記事で述べました。

 

白血球と免疫の仕組みについて分かりやすく説明してみた

 

 

 

 

そして、外敵を攻撃すると「炎症」と言われる反応が起きます。

 

 

 

「免疫」と「炎症」の違いは、「防衛軍」と「国を守る本土決戦による戦火」です。

 

 

 

 

免疫・・・防衛軍(守るシステム、能力)

 

炎症・・・戦火、戦闘(状態、反応)

 

 

 

 

炎症のパターンはこちらです。

 

 

 

  • 赤くなる

 

  • 腫れる

 

  • 熱くなる

 

  • 痛い

 

  • 動かせない等

 

 

 

 

このシステムが正常に働いていれば、体にとって頼もしい存在です。

 

 

 

しかし、この防衛軍が何らかの理由でおかしくなってしまうことがあります。そうなったら頼もしい防衛軍が自国にダメージを与えてしまうのです。

 

 

 

 

そして、免疫システムがおかしくなるパターンには「自己免疫疾患 じこめんえきしっかん」と、「アレルギー」があります。

 

 

 

この2つは違います。

 

 

 

「自己免疫疾患」は、「自己」と「非自己」の認識がうまくできなくなって、自己を構成する物質を「外敵(抗原)」と勘違いして攻撃をしてしまう疾患です。

 

 

免疫が「これは異物だな(自分じゃないな)」と判断して、敵として攻撃するので、体はダメージを受けます。

 

 

 

「慢性関節リウマチ」や、「膠原病」等です。

 

 

 

 

「膠原病 こうげんびょう」の話をすると、「高い所でなるやつ?」と聞かれることが多いです。それは、「高山病 こうざんびょう」です。

 

「膠原」とはコラーゲンのことです。そして、膠原病とは全身に炎症が起こる病気で、世間では、難病ということになっています。本当は糖質の過剰摂取が主な原因なのですが、それを無視しているので、原因は分かっていない…とされています。

 

 

以下の記事に膠原病について書いています。

 

 

炎症と自己免疫疾患について分かりやすく説明してみた

 

 

 

以上が「自己免疫疾患」です。

 

 

 

「アレルギー」は、「自己」と「非自己」の認識には問題がありません。攻撃対象は「自己」ではなく、外敵です。

 

 

 

ただし、外敵に対して過剰に反応します。それによって、体に不都合が起こるのです。

 

 

 

 

「気管支ぜんそく」、「アトピー性皮膚炎」、「花粉症」等です。

 

 

 

 

以下が「アレルギー」と「自己免疫疾患」の違いです。

 

 

 

  • 自己免疫疾患・・・自己と非自己の認識が狂う、自己を攻撃

 

  • アレルギー・・・・・・・自己と非自己の認識は正常、外敵を過剰に攻撃

 

 

 

 

本記事のテーマは「アレルギー」ですので、後者についての話になります。

 

 

 

スポンサーリンク

 

 

 

アレルギーに関わる細胞

 

 

アレルギーのメカニズムについてお話する前に、関係する細胞を紹介します。

 

 

 

 

 

 

マクロファージ

 

 

「マクロファージ」は、白血球の「単球」が成長した姿の1つです。

 

 

 

 

 

「マクロファージ」は、外敵を見つけると、食べることで処理します。これを「貪食 どんしょく」とか「食作用」と言います。

 

 

さらに、取り込んだ敵の情報を「ヘルパーT細胞」に伝える役目も果たします。

 

 

 

 

樹状細胞

 

 

白血球の「単球」から成長したのが「樹状細胞 じゅじょうさいぼう」です。

 

 

 

 

外敵を取り込んで、その情報を「ヘルパーT細胞」に伝えます。マクロファージと似ていますが、情報を伝達する能力はこの樹状細胞の方が優れています。

 

 

なので情報屋です。

 

 

 

顆粒球

 

 

「顆粒球」は顕微鏡で見ると、多くの顆粒があります。

 

貪食能力を持っていて、3タイプあります。

 

 

 

 

 

 

 

肥満(マスト)細胞

 

紛らわしいことに、太いからこの名前がついているのですが、「肥満」とは全く関係ない細胞です。

 

 

ではどんな細胞なのかというと、大きな特徴がこちらです。

 

 

 

 

細胞の表面には「IgE」という「抗体」の定常部と結合する「受容体(レセプター)」がたくさんあります(※「IgE」、「抗体」については後で詳しく説明します)

 

 

 

 

「受容体」とは、何らかの刺激を受け取る「受信機」みたいなものです。

 

 

 

 

そして、肥満細胞の中には「化学物質を含んだ顆粒」がたくさん入っています。異物を見つけると、顆粒中の化学物質を放出して排除しようとします。

 

 

 

ちなみに肥満細胞が放出する物質はこちらです。

 

 

 

『慢性膀胱炎・間質性膀胱炎・膀胱頚部硬化症 マスト細胞(肥満細胞)の存在意義』より引用

 

 

1.ヒスタミン

 

アレルギー反応に関与する代表的刺激成分。血管透過性を高め、いろいろな血液中の成分を漏れ出させる作用があります。風邪薬にはヒスタミンの作用を抑える抗ヒスタミン剤が一般的に含まれています。また膀胱などの内臓の平滑筋を収縮させる作用もあります。

 

 

2.ヘパリン

 

血液をサラサラにする成分。赤血球・白血球やリンパ球が血小板の作用で固まらないようにしています。血液透析の際に、血液が固まらないように回路の中に注入される薬剤として有名。

 

 

3.プロスタグランディン

 

炎症物質としては有名な成分。血管拡張作用と赤血球柔軟作用があります。消炎鎮痛剤は、この成分を抑制する働きで、痛みを抑えます。消炎鎮痛剤で急性胃炎や胃潰瘍の副作用が有名ですが、プロスタグランディンの働きを抑えることで毛細血管の流れを悪くして胃粘膜細胞の血液栄養供給が低下するからです。

 

 

4.サイトカイン

 

アレルギー反応や免疫システムに関与する様々な細胞(リンパ球)の働きの強さと期間を調節し、情報交換を媒介するための成分です。物質的には、ホルモン様低分子タンパク質です。

 

IL(インターロイキン)-3:造血前駆細胞の促進

 

IL-4:B細胞の活性化

 

IL-5:B細胞の分化増殖、好酸球の分化増殖

 

IL-6:B細胞の分化増殖、発熱

 

IL-10:マクロファージ活性の抑制

 

IL-13:B細胞の分化増殖

 

I-309:好中球・マクロファージ・血管平滑筋細胞の遊走と活性化

 

GM-CSF(マクロファージコロニー刺激因子)

 

TNF-α(腫瘍壊死因子):好中球遊走、細胞接着因子活性化

 

 

 

5.ケモカイン

 

白血球やリンパ球の遊走を促す作用のある成分がケモカインと呼ばれ、サイトカインに分類される場合もあります。

 

CXCL-8(旧名IL-8):好中球遊走・活性化

 

 

 

 

 

この肥満細胞の他の特徴が以下です。

 

 

  • 造血幹細胞由来の血球系細胞

 

 

  • マクロファージや樹状細胞のように血管の周りや、粘膜など、いろんな組織に存在している。

 

 

  • 「蕁麻疹」はこのマスト細胞の活性化が原因

 

 

 

ナチュラルキラー(NK)細胞

 

 

 

 

体をパトロールして、敵を発見したら、自分の判断で攻撃します。

 

 

 

T細胞

 

免疫システムの特殊部隊で、知的な働きをします。

 

「T細胞」は数種類あって、それぞれ役割が違います。

 

 

 

 

 

  • 免疫の司令官・・・ヘルパーT細胞

 

  • 免疫のスナイパー・・・キラーT細胞

 

  • 免疫のストッパー・・・サプレッサーT細胞

 

 

 

ちなみに、「ヘルパーT細胞」も何種類かあります。

 

 

 

 

B細胞

 

 

 

 

 

「B細胞」は、特定の敵に効く「抗体 こうたい」というミサイルを作る工兵です。

 

 

これを「T細胞」の指令で製造します。

 

 

ここからは、このB細胞が作る「抗体」について説明します。これがアレルギーに関わっているからです。

 

 

 

スポンサーリンク

 

 

 

抗体を産生するB細胞とは

 

 

抗体は、「B細胞」が分化してできた「形質細胞」が造ります。

 

 

 

 

 

 

「B細胞」について簡単に説明します。

 

 

 

 

血液は、液体である「血しょう」と、「赤血球」、「白血球」、「血小板」にわけられます。

 

 

 

 

 

「白血球」の一種が「リンパ球」です。

 

 

 

 

 

 

で、リンパ球の一種が「B細胞」です。

 

 

 

 

 

 

 

「B細胞」は、「ヘルパーT細胞」の指令を受けて、「抗体」を使って、異物を捕獲して攻撃します。

 

 

 

 

作られた「抗体」は、対になる外敵とくっつきます。そして外敵を沈殿・凝縮させるのです。

 

 

 

 

このように、抗体と敵(抗原)が結合すると、それが目印となって、マクロファージが強力に食べようとします。このように食細胞の食欲を促す働きを「オプソニン化」と言います。

 

 

 

 

というわけなので、武器とはいっても、「抗体」が直接敵を破壊(分解)するわけではありません。

 

 

 

 

 

「抗体」は、水に溶けやすいタンパク質で、血液中や体液中に存在しています。

 

 

 

なので、これを「体液性免疫 たいえきせいめんえき」と言います。

 

 

 

これに対して、「キラーT細胞」は、「抗体」を使わず細胞が直接異物を攻撃します。これを「細胞性免疫 さいぼうせいめんえき」と言います。

 

 

 

  • B細胞・・・抗体を使用=体液性免疫

 

  • キラーT細胞・・・細胞が直接攻撃=細胞性免疫

 

 

 

前者は武器を使った攻撃、後者は武器を使わない攻撃のイメージです。

 

 

 

ちなみに、「B細胞」の「B」とは、骨髄(Bone Marrow)で分化する・・・という意味です。一方、「T細胞」の「T」は、胸腺(Thymus)です。

 

 

次に「抗体」について解説します。

 

 

 

抗体の構造

 

 

 

外敵や自己の成分ではない物質のことを「抗原 こうげん(アレルゲン)」と言います。

 

 

 

「抗原」には、細菌、ウイルス、カビ、そして、本来体に害がない物質である花粉、食品…等があります。

 

 

 

外敵、非自己 = 抗原

 

 

 

そして、体に抗原が入ってきた時に、対抗して体を守ろうとする物質のことを「抗体 こうたい 」と言います。

 

 

 

 

 

 

 

 

 

別名は「免疫グロブリン immunoglobulin(イムノ グロブリン)」で、「Ig(アイジー)」と略されます。

 

 

 

 

抗体 = 免疫グロブリン = Ig

 

 

 

「抗体」は、リンパ球の一種「B細胞」が造る「誘導ミサイル」です。

 

 

 

侵入してきた「抗原」のタンパク質の立体構造を原形にして作られます。

 

 

 

 

この抗体(免疫グロブリン)はつの部品でできています。ここでは、「IgG」という抗体を例にします。

 

 

 

 

 

 

 

 

「H鎖」と呼ばれる長いペプチド鎖と、「L鎖」と呼ばれる短いペプチド鎖が2本ずつです。

 

 

全体は「Y」の形をしています。

 

 

抗体は、「糖タンパク分子」です。

 

 

 

  • H鎖 Heavy Chain 重鎖)

 

  • L鎖 Light Chain 軽鎖)

 

 

また、上の部分は「可変部 かへんぶ」、下の部分を「定常部 ていじょうぶ」と呼びます。

 

 

 

 

 

 

抗原と結合するのは「可変部」です。

 

 

 

 

 

「可変部」は、抗体ごとにアミノ酸配列が異なります。

 

 

 

この部分は多様性があります。「抗原」の形とかみ合うような構造で、鍵と鍵穴の関係に例えられます。

 

 

 

従って、1つの抗体が、形の合わない抗原と結合することはありません。

 

 

 

 

 

 

この仕組みのおかげで、誘導ミサイルのように「狙った抗原」をピンポイントで攻撃できるのです。これを「抗原抗体反応」と言います。

 

 

 

 

そして、「抗体」の下の「定常部」は、「食細胞」や「肥満細胞」に結合する部分です。

 

 

 

スポンサーリンク

 

 

 

抗体の働きと種類

 

 

 

「抗体」の働きはこちらです。

 

 

 

  • オプソニン化・・・抗原にくっついて、食細胞の食欲を促す

 

  • 抗原の中和(無毒化)・・・抗原の周りを取り囲んで、毒素を中和する

 

  • 補体を活性化して細菌の細胞膜を破壊する

 

  • 炎症

 

 

 

 

抗体の「可変部」はオーダーメイドなので、「ペアになる抗原」ごとにバラバラです。

 

 

そして、このような違いとは別に、抗体(Ig)には種類があります。

 

 

人間の抗体は種類です。

 

 

 

  • IgM(アイジー・エム)

 

  • IgA(アイジー・エー)

 

  • IgG(アイジー・ジー)

 

  • IgD(アイジー・ディー)

 

  • IgE(アイジー・イー)

 

 

 

抗原が体内に侵入した場合、最初に「IgM」が作られて対応します。

 

 

粘膜では「IgA」が、粘膜以外の部分では「IgG」が戦います。この2つがメインとなって抗原の中和(無毒化)を担当します。

 

 

「IgD」は、B細胞表面に存在しているのですが、その役割はまだよく分かっていません。

 

 

そして、「アレルギー」の主役とも言える「IgE」が炎症を起こして戦います。この現象には「肥満細胞」が関わっています。

 

 

 

 

ちなみに「IgE」の量は、有名なわりに、抗体の中でも少ないです。

 

 

 

それぞれの性質を簡単にまとめます。

 

 

 

なお、イラストの細かい部分は諸説紛々としており、どれが正しいのか分かりません。その為、一番シンプルなものを採用しました。かなり簡略化しているので、ご了承下さい。なお、「IgD」、「IgE」、「IgG」は同じ形をしているように描かれたものが多いので、ここでも同じようにしました。

 

 

 

 

 

 

Ig M

 

 

 

 

 

「IgM」の特徴が以下になります。

 

 

  • 免疫グロブリンの中で最も分子量が大きい

 

  • 5つ結合しているので捕獲力が強い

 

 

  • 「IgM」は、抗原が侵入した時に最初に作られる抗体

 

  • 「B細胞」の受容体として働く

 

  • 「T細胞」の指示がなくても分泌

 

  • 赤ちゃんが始めて作れるようになる抗体

 

 

 

 

Ig A

 

 

 

 

 

粘膜に抗原が侵入した場合、この「IgA」が抗原と戦います。

 

 

特徴は、抗原(外敵)を鼻水、涙、痰等でなんでもくるんで外に出すことです。ここが、特定の敵に反応する「IgE」抗体と違います。

 

 

 

 

この「IgA」抗体がたくさんあって、粘膜で抗原を防ぎきることができれば、アレルギーの主役である「IgE」が働く機会が減るので、炎症が発生しにくくなります。

 

 

逆に「IgA」が少ないと、抗原のさらなる侵入を許してしまうので、「IgE」の仕事を増やします。つまり、アレルギーの症状が酷くなります。

 

 

 

ちなみに、「IgA」が作られる為には「ビタミンA」が必要です。

 

 

 

「IgA」の特徴が以下になります。

 

 

  • 「血清型IgA」と、「分泌型IgA」の2つある

 

 

  • 分泌型は、血液中より粘膜の分泌液(気管支分泌液、唾液、涙、鼻汁、腸管分泌液、前立腺液、腟分泌液)に多く含まれていて、細菌などの侵入を防いでいる

 

 

  • 母乳の主な免疫物質

 

 

  • 腸に多く存在しているので、腸粘膜に不調があると「IgA」が減少する。その結果、普段何も起こらない食材にアレルギー反応が起こったり、下痢になったり、風邪をひきやすくなったりする

 

 

Ig G

 

 

 

 

 

「IgG」の特徴が以下になります。

 

 

  • 「IgM」よりも遅れて産生される

 

  • 「T細胞」の指示がないと作れない

 

  • 血液中の抗体の中で最も数が多い

 

  • 細菌や毒素と結合する能力が高い

 

  • 血中に留まる時間が長い

 

  • 抗体の中で唯一胎盤を通過できるので胎児に移行し、赤ちゃんの免疫が発達するまで守る

 

  • 「オプソニン化」や「中和」の作用が強い

 

 

 

 

Ig D

 

 

 

 

 

「リンパ球」表面に「受容体」として存在しています。

 

 

詳しくは、まだよく分かっていないそうです。

 

 

 

 

IgE

 

 

 

 

 

「花粉症の検査」で測定するのが「IgE」の血中濃度です。

 

 

「IgE」の特徴が以下になります。

 

 

  • 非常に量が少ない抗体

 

  • 気道、消化管粘膜、リンパ節等で作られる

 

  • 花粉症、アトピー、気管支喘息に関わっている抗体

 

  • 「IgE」が作られると、「好塩基球」や「肥満細胞(マスト細胞)」に結合してアレルギー反応を起こす

 

  • 寄生虫を防御すると考えられている

 

 

 

スポンサーリンク

 

 

 

 

アレルギーの種類

 

 

アレルギーに関わる細胞や、抗体についてお話したので、ここからはアレルギーの仕組みについて説明します。

 

 

 

アレルギー反応はタイプあります。

 

 

 

異物が侵入してから数分~8時間以内に起こるものを「即時型 そくじがた」、24時間以上経ってから起きるものを「遅延型 ちえんがた」と言います。

 

 

 

 

  • 即時型・・・数分~8時間以内で起こる

 

  • 遅延型・・・24時間以上経って起こる

 

 

 

花粉症や気管支喘息等、アレルギーの多くは「即時型」です。そして、これには「IgE」が関わっています。

 

 

 

ちなみに、食物アレルギーは「即時型」と「遅延型」があり、前者は「IgE」が関わっていて、後者は「IgG」が関わっています。

 

 

 

それだけでなく、「アレルギー」は、アレルギーが起こるメカニズムごとに、大きくⅠ~Ⅴの型に分けられています。

 

 

 

「即時型アレルギー」はⅠ~Ⅲに分類され、「遅延型アレルギー」はⅣ型になります。

 

 

 

V型は、Ⅱ型アレルギーの特別な形なので、Ⅱ型に含む場合もあります。

 

 

 

 

 

  • Ⅰ型アレルギー・・・(即時型  アナフィラキシー型)

 

 

  • Ⅱ型アレルギー・・・(細胞障害型 細胞融解型)

 

 

  • Ⅲ型アレルギー・・・(免疫複合体型 Arthus型)

 

 

  • Ⅳ型アレルギー・・・(遅延型 細胞性免疫 ツベルクリン型)

 

 

  • Ⅴ型アレルギー・・・(刺激型)

 

 

 

一般的に多くの人が「アレルギー」と呼んでいるのは、Ⅰ型のアレルギーの事です。

 

 

 

というわけなので、この分類でいくと「花粉症」や「蕁麻疹」は、「Ⅰ型アレルギー」になります。

 

 

 

 

ちなみに、「アトピー性皮膚炎」は、Ⅰ型とⅣ型の混合です。

 

 

 

そして、最初に説明した「自己免疫疾患」が、「アレルギー(Ⅱ、Ⅲ型)」に分類されることがあります。

 

 

 

「抗体の種類」といい、「アレルギーの型」といい、複雑になっているので、このへんで混乱して読むのを止めてしまう方もいるかもしれません。

 

 

 

なので、ここでもっとシンプルに考えましょう。

 

 

 

『アレルギーの9割は腸で治る クスリに頼らない免疫力のつくり方 / 著者:藤田紘一郎』より引用

 

 

 

みなさんのなかには「アレルギーという言葉はさまざまな症状に使われて、使い方が混乱している」と思っている人が多いと思います。

 

 

 

確かに各種アレルギーはそれぞれ、原因となる物質や、症状の現われる場所が異なります。そういう意味では、個々のアレルギー病は別の病気のように見えます。

 

 

けれども、アレルギーが起こる仕組みは、実は全部同じなのです。

 

 

 

たとえるなら、お茶のようなものです。

 

 

 

お茶の木そのものは1種類で、その葉っぱが製法によって緑茶になったり、紅茶になったり、烏龍茶になったりします。

 

 

 

もちろん一口にお茶の木といっても、植物分類学的には多くの種類がありますが、「緑茶の木」とか「紅茶の木」といった木はありません。

 

 

 

それと同じで、アレルギーにはいろいろな種類・症状がありますが、「人間の体内で起こっていること」自体は同じなのです。

 

 

(4~5p)

 

 

アレルギーを「木」、原因物質や症状を「葉っぱ」に例えています。

 

 

アレルゲンという「葉っぱの製法」が違うだけで、アレルギー反応が起こるメカニズムは同じです。

 

 

 

従って、「葉っぱ」にあたる何かのアレルギーがある人は、別のアレルギーを持っていることは珍しくありません。

 

 

 

本質である木そのもを解決する必要があるのです。

 

 

 

 

ちなみに、私も「ブタクサ」のアレルギーだけでなく、「ハウスダスト」、「シカカイ(ハーブ)」のアレルギーがあります。

 

 

 

このうち治ったのは「ブタクサ」だけです。

 

 

 

スポンサーリンク

 

 

 

Ⅰ型のアレルギー

 

 

Ⅰ型アレルギーは、液性免疫なので「抗体」が関わっています。「IgE」抗体です。

 

 

 

抗原と接触してから数分~1時間半以内に症状がでます。

 

 

まず、抗原が始めて体内に侵入します。

 

 

 

抗原は「樹状細胞」などに取り込まれて、その情報が「ヘルパーT細胞」に伝えられます。

 

 

 

 

「ヘルパーT細胞」は、抗体を作る働きのある「B細胞」に指令を出します。

 

 

 

 

情報を元に、「形質細胞」がその抗原に合った「IgE」抗体を作ります。

 

 

 

 

 

次に、その「IgE」抗体は、粘膜などに存在する「肥満細胞」に結合します。

 

 

 

 

 

これを「アレルゲンに感作された状態」と言います

 

 

 

 

ここからは、同じ抗原の2回目以降の侵入となります。

 

 

 

ノコノコと抗原が侵入してきて、「肥満細胞に結合したIgE抗体」に結合します。

 

 

 

 

 

 

それが引き金となって、「肥満細胞」は顆粒を放出します。

 

 

 

 

 

 

顆粒の中にあるヒスタミン等の化学伝達物質がばら撒かれることによって、周囲の組織は以下のような状況になります。

 

 

 

  • 血管透過性の亢進

 

 

 

  • 気管支平滑筋の収縮

 

 

 

  • 粘液分泌の亢進

 

 

 

これが「Ⅰ型アレルギー」の流れになります。

 

 

 

アレルギー体質の人は、「IgE」を作りやすく、肥満細胞の細胞膜上にたくさんの抗体を持っているようです。

 

 

 

 

ちなみに、即時型フードアレルギーは、Ⅰ型です。

 

 

 

 

Ⅱ型のアレルギー

 

 

 

Ⅱ型アレルギーは、「自分の細胞を破壊してしまうアレルギー」です。

 

 

液性免疫なので「抗体」が関わっています。抗体の種類は「IgM」と「IgG」です。

 

 

 

正常であれば、免疫は自分の細胞を攻撃しません。

 

 

薬剤や感染等が原因で、細胞や組織を抗原として認識し、それに対して抗体(IgMとIgG)が生産されてしまいます。その結果、自分の細胞を攻撃します。

 

 

 

 

「自己の細胞表面」が抗原と認識されて、そこに抗体が結びつく

 

 

それを「好中球」や「マクロファージ」が攻撃して傷つける

 

 

 

 

その為、細胞傷害型アレルギーと呼ばれます。

 

 

反応は急性なので即時型です。

 

 

 

スポンサーリンク

 

 

 

Ⅲ型のアレルギー

 

 

Ⅲ型アレルギーは、液性免疫なので「抗体」が関わっています。

 

 

「体液に溶けた抗原(可溶性抗原 かようせいこうげん)」と、「IgG」と、「補体」の反応で起こるアレルギーです。

 

 

 

 

「抗原抗体複合体」に「補体」が結合します。それが目印となって「食細胞」が処理をします。

 

 

しかし、この「免疫複合体」が、持続的な感染や、自己免疫疾患などによって過剰に作られると問題が起きます。

 

 

「免疫複合体」の量が食細胞の処理能力を上回ると、生体内を移動して、それが組織や臓器に沈着します。

 

 

 

それが原因で、肥満細胞を刺激します。

 

 

 

すると、その場所で、肥満細胞から化学伝達物質が放出されてアレルギー反応が起きます。

 

 

 

その為、免疫複合型アレルギーと呼ばれます。

 

 

反応は即時型です。

 

 

遅延型フードアレルギーはこのⅢ型です。

 

 

 

 

Ⅳ型のアレルギー

 

Ⅳ型アレルギーは、細胞性免疫なので、「抗体」は関わっていません。

 

 

このアレルギーは、司令官である「T細胞」や、「マクロファージ」が関わっています。

 

 

「T細胞」が放出する「サイトカイン」が、マクロファージを活性化し、炎症を起こします。

 

 

これは「T細胞」の活性化に時間がかかるため反応が遅いので「遅延型」です。

 

 

ツベルクリン反応はⅣ型です。

 

 

Ⅴ型のアレルギー

 

 

自分の組織や細胞を「抗原」と認識してしまうⅡ型アレルギーの特殊な形がⅤ型アレルギーです。

 

 

Ⅱ型との違いは、「抗原」がホルモン等の受容体(レセプター)であることです。

 

 

 

受容体が抗原になる + 抗体

 

 

 

そして、Ⅱ型は細胞傷害型アレルギーでしたが、

 

 

 

Ⅴ型は細胞の機能を低下、あるいは亢進させます。前者は「重症筋無力症」、後者は「グレーブス病(バセドウ病)」です。

 

 

 

刺激型アレルギーとも呼ばれます。

 

 

 

 

Ⅰ型アレルギーの花粉症

 

 

アレルギーの種類について色々と説明してきましたが、多くの人がなっているのがⅠ型の花粉症だと思います。

 

 

次はこの花粉症の原因や対策についてお話します。

 

 

重度の花粉症の人も糖質制限や栄養療法で改善できる

 

 

 

 

スポンサーリンク

 

 

白血球と免疫の仕組みについて分かりやすく説明してみた

 

 

血液に含まれている「白血球 はっけっきゅう」は、アメーバー状の細胞です。

 

 

 

 

この白血球が、防衛軍のように、身体を外敵から守っています。

 

 

 

このように言うと大げさな表現だと思われるかもしれませんが、実際に、身体は常に外敵にさらされているのです。

 

 

 

その証拠に、生体が死ぬと、死後数日で腐敗します。

 

 

 

何故、腐敗するのか…

 

 

 

それは、この世は細菌や病原体などの外敵だらけだからに他なりません。

 

 

 

もし防御システムが無かったら、すぐに細菌が増殖し、腐敗します。

 

 

 

生きている生体が腐らないのは、細菌や病原菌などの外敵から身を守るシステムが絶えず働いているからなのです。

 

 

 

この防衛システムの事を「免疫反応 めんえきはんのう」と言います。

 

 

 

そして、免疫システムの主役が「白血球」です。

 

 

 

本記事では、白血球の特徴や、免疫のシステムについて説明していきます。

 

 

 

スポンサーリンク

 

 

血液に含まれる白血球

 

 

まずは「白血球」がどんなものなのか説明します。

 

 

 

血液は、液体の「血漿 けっしょう」と、

 

 

 

血球の「血小板 けっしょうばん」、「赤血球 せっけっきゅう」、そして、「白血球」に分けられます。

 

 

 

 

 

 

「白血球」は外敵と戦う免疫システムの主役です。

 

 

 

この免疫に関わる細胞のことを、「免疫細胞 めんえきさいぼう」と呼びます。

 

 

 

 

 

「白血球」は、働きや特徴から、以下のようにさらに細かく分けられます。

 

 

 

 

 

 

大まかに3系統があります。

 

 

  • 顆粒球

 

  • 単球

 

  • リンパ球

 

 

 

「単球」と「リンパ球」は無顆粒球です。

 

 

 

ちなみに、白血球の中で一番数が多いのは顆粒球の「好中球」で、全白血球の約半分を占めます。

 

 

 

 

 

免疫細胞の種類と特徴

 

 

免疫細胞は似たような特徴のものが多いです。似ているもの同士がチームプレーをするので、キャラクターを憶えられないと混乱します。

 

 

 

なので、先に免疫反応で活躍する細胞の紹介をします。

 

 

 

 

まずは「顆粒球 かりゅうきゅう」からです。

 

 

 

 

 

 

 

 

顆粒球とは

 

 

「顆粒球」は、外敵を見つけると、処理する為に食べます。そして、取り込んだ異物を分解します。

 

 

 

 

敵をみつける

 

 

捕食

 

 

消化、分解

 

 

 

 

このような行為を「貪食 どんしょく」とか「食作用 しょくさよう」と言い、

 

 

貪食する細胞の事を「食細胞」、「貪食細胞」と言います。

 

 

 

 

好中球

 

 

 

 

白血球の中で一番多い「好中球 こうちゅうきゅう」は、最前線で戦う突撃兵です。

 

 

アクション系の作品に出てくる数が多い雑魚キャラのイメージです。特徴は以下になります。

 

 

 

 

  • 任務:パトロールと外敵駆除

 

  • 武器:活性酸素

 

  • 攻撃の方法:異物を食べて消化する(貪食)

 

  • 攻撃力:マクロファージと大差ない

 

  • 特殊部隊が偏性するまでの戦闘では、好中球が主力部隊

 

  • 炎症部位で生じた膿は、「好中球」の屍

 

 

 

好酸球

 

 

 

 

「好酸球 こうさんきゅう」の特徴は以下です。

 

 

  • アレルギー反応の制御(ヒスタミンを不活性化)

 

  • 貪食能力は弱い

 

  • 寄生虫と闘うことができる

 

 

 

好塩基球

 

 

 

 

 

詳しい事がよく分かっていない「好塩基球 こうえんききゅう」の特徴は以下です。

 

 

  • 感染とアレルギー反応の両方に関与している

 

  • 数が少ない

 

  • 貪食能力が弱い

 

 

 

 

 

 

単球とは

 

次は「無顆粒球」の「単球 たんきゅう」を紹介します。

 

 

 

 

 

 

単球の核の形は、そら豆や腎臓のようです。

 

 

 

この単球には、変身能力があります。

 

 

 

単球は分化して「マクロファージ」や、「樹状細胞」に成長します。

 

 

 

「分化」とは、単純なものが複雑なものに変わることです。

 

 

 

 

マクロファージ

 

 

 

 

「マクロファージ」は、敵を察知する部隊として体中に配備されています。

 

 

 

 

そして、敵をみつけると捕食、消化し、分解します。「マクロファージ」も食細胞です。

 

 

 

別名は「大食細胞」です。

 

 

 

  • 任務:敵の発見、貪食による処理、捕らえた敵の情報を特殊部隊に伝える

 

 

  • 攻撃力:特殊部隊よりは劣る、貪食が限界に達すると破裂して死ぬ

 

 

 

 

樹状細胞

 

 

次に、マクロファージと似た働きをする「樹状細胞 じゅじょうさいぼう」について説明します。

 

 

 

 

 

 

 

「樹状細胞」の仕事は「諜報」です。

 

 

 

貪食能力をもっているので、異物(抗原)を取り込んでその特徴を「リンパ球」に伝えて、攻撃するように指示を出します。

 

 

 

だから「司令塔」でもあります。

 

 

 

 

このように、特殊部隊に敵の情報を伝える細胞のことを「抗原提示細胞 こうげんていじさいぼう」と言います。

 

 

 

 

 

 

 

「好中球」と「樹状細胞」と「マクロファージ」の違いについて説明します。

 

これらは、敵を食べたり、情報を伝えたり…と、働きが似ているので混乱する人も出てくると思います。

 

 

 

  • 好中球(顆粒球)・・・・・・・・食作用

 

  • 樹状細胞(無顆粒球の単球)・・・食作用、抗原提示細胞

 

  • マクロファージ(無顆粒球の単球)・・・食作用、抗原提示細胞

 

 

 

「好中球」は敵を蹴散らすのが専門、「樹状細胞」は敵の情報を伝達するのが専門、「マクロファージ」は両者の中間です。

 

 

 

特に「樹状細胞」と「マクロファージ」が分かりにくいのですが、違うのは抗原を伝える能力です。この能力(T細胞を活性化させる能力)は、樹状細胞の方が優れています。

 

 

そして、以下のような違いもあります。

 

 

  • 樹状細胞・・・獲得免疫に関与

 

  • マクロファージ・・・自然免疫に関与

 

 

 

 

 

リンパ球とは

 

 

免疫システムの特殊部隊である「リンパ球」は、大きくわけて3つです。

 

 

 

 

 

 

まずは「T細胞」から説明します。

 

 

 

 

T細胞の種類と働き

 

 

 

「T細胞」は、以下のように3つに分けられます。

 

 

 

 

 

 

敵が強くて手に負えない場合、「マクロファージ」は「サイトカイン」というアイテムを使って助っ人を召喚します。

 

 

 

 

それに刺激を受けた「樹状細胞」は、取り込んだ敵の情報を連絡します。

 

 

 

その情報を受け取るのが、他のT細胞に命令を下す権限を持った「ヘルパーT細胞」です。

 

 

 

 

「ヘルパーT細胞」もサイトカインを放出して、スナイパーである「キラーT細胞」に戦闘を命じます。

 

 

 

 

 

 

簡単にまとめると…

 

 

 

「マクロファージ」が援軍を呼ぶ

 

 

「樹状細胞」が敵の情報を伝達

 

 

特殊部隊の「ヘルパーT細胞」がキャッチ

 

 

「キラーT細胞」に攻撃命令

 

 

 

 

 

 

「キラーT細胞」は、「マクロファージ」が倒すことが出来なかった敵でも仕留めることができます。

 

 

 

突撃兵である「好中球」や「マクロファージ」の攻撃は貪食でしたが、特殊部隊である「キラーT細胞」は腕利きのスナイパーなので、敵の細胞を傷つけるような武器を使います。

 

 

 

武器はパーフォリン、グランザイムです。

 

 

 

 

「サプレッサー(レギュラトリー)T細胞」は、免疫反応を抑制する働きがあるようですが、存在が疑問視されているという説があったり、図では省略される事も多いです。

 

 

 

 

 

 

「T細胞」の「T」は、「Thymus(胸腺:タイマス)」という意味です。

胸腺は心臓の上にある小さな器官です。

 

 

この「胸腺士官学校」で、「リンパ球」は特殊訓練を受けて「T細胞」になります。

 

 

 

 

 

 

B細胞の働きと役割

 

 

 

 

 

 

「B細胞」は特殊武器の製造を行なう工兵です。

 

 

 

特殊武器は、「抗体(別名:免疫グロブリン)」と言います。

 

 

 

 

 

ちなみに、最初は出撃準備に時間がかかります。

 

 

 

「B細胞」の「B」は「Bone marrow(骨髄:)」由来です。

 

「T細胞」も「B細胞」も基本的には骨髄の幹細胞で作られる…と言われています。しかし、「B細胞」は胸腺での特殊訓練を受けません。骨髄で分化し、成長すると言われています。

 

 

ただし、「血液が骨髄で造られる」という説は、以下の記事でも説明しましたが、信憑性に欠けます。

 

 

血液と赤血球とヘモグロビンについて分かりやすく説明してみた②

 

 

 

 

ナチュラルキラー(NK)細胞の働きと役割

 

 

 

 

 

「ナチュラルキラー細胞」はリンパ球の一種ですが、抗原の情報を受け取ってから攻撃する「T細胞」や「B細胞」とは異なります。

 

 

 

「T細胞」のように胸腺で特殊訓練も受けませんし、「B細胞」のように相手に合わせて武器を使ったりしません。

 

 

 

特殊部隊…というよりフリーランスの兵士です。

 

 

 

そして、マクロファージ等と同じ「自然免疫」です。

 

 

 

パトロールをして、敵を見つけると迅速に攻撃するのですが、命令を受けず、自分で判断し攻撃します。

 

 

 

殺傷能力は高いです。

 

 

 

他のリンパ球との違い

 

 

  • T細胞とB細胞は抗原の情報を受け取ってから戦闘に加わるが、NK細胞は抗原を必要としない

 

  • 「キラーT細胞」のように胸腺で特殊訓練を受けない

 

  • 「B細胞」のように敵の属性に合わせて戦法(抗体を生産)を変えない

 

  • 生まれたままの状態で攻撃する

 

  • 最初から大きな体で、大量の武器を持ってパトロールし、迅速に殲滅する

 

 

 

 

 

一つ一つの細胞の種類について説明したので、次はこれらが防衛システムでどのような部隊に所属して働いているのかについて説明します。

 

 

 

スポンサーリンク

 

 

 

 

自然免疫と獲得免疫

 

 

 

免疫システムのことを「防衛軍」に例えましたが、実は戦闘スタイルの違う2つの部隊に分かれています。それがこちらです。

 

 

 

 

  • 自然免疫(しぜんめんえき)・・・常設部隊

 

  • 獲得免疫(かくとくめんえき)・・・精鋭部隊

 

 

 

 

 

侵略者に対して、一番最初に攻撃を仕掛けるのが常設部隊です。そして、それでも相手が強いなら精鋭部隊が加わる…というシステムになります。

 

 

 

第一部隊である「自然免疫」は、敵をなりふり構わず全力で倒しますが、

 

 

第二部隊である「獲得免疫」は、知的な攻撃を仕掛けます。

 

 

 

 

他にも特徴を述べておきます。

 

 

 

 

第一部隊・自然免疫とは

 

 

「自然免疫」は、最初から備わっている部隊で、攻撃対象は「全ての敵」です。

 

 

 

  • どんな敵に対しても反応が早い

 

 

  • 学習機能がないので、同じ敵を効率よく倒すことができない

 

 

  • 手に負えない時は「獲得免疫」の力を借りる

 

 

  • 貪食細胞(マクロファージ、好中球、樹状細胞)や、NK細胞(リンパ球)の働きによる

 

 

 

 

第二部隊・獲得免疫とは

 

 

獲得した免疫…ですから、敵と戦った経験だけレベルアップしていく部隊です。

 

 

攻撃対象は「特定の敵」です。

 

 

 

  • 脊椎動物にしかない能力

 

 

  • 学習機能があるので敵を分析して、敵の属性に合った攻撃をする

 

 

  • 獲得免疫は、T細胞やB細胞(リンパ球)の働きによる

 

 

 

 

自然免疫の戦術

 

 

ここからは、「自然免疫」の流れについて説明します。

 

 

体は外敵が侵入しにくいように、皮膚や粘膜が外壁となって防御しています。

 

 

しかし、この壁をかいくぐって、敵(抗原)が侵入することもあります。

 

 

 

体をパトロールしていた「好中球」や、「マクロファージ」や、「NK細胞」がこれらを見つけると、攻撃します。

 

 

 

 

ここまでが「自然免疫」です。

 

 

 

 

「自然免疫」は相手が何であろうが「同じ手段」で戦おうとします。例えるなら、相手が剣を持っていても、戦闘機に乗っていても、常に竹ヤリで向かっていくようなもんです。

 

 

 

 

 

これで片付けばよいのですが、場合によっては敵が強すぎたり、数が多すぎたりするわけです。

 

 

 

すると、援軍を派遣するわけですが、その戦闘が「獲得免疫」になります。

 

 

 

 

「自然免疫」だけでは勝てないと悟った「マクロファージ」は、援軍を召喚するために、「サイトカイン」というタンパク質を使います。これは「のろし」とか「警報」みたいなものです。

 

 

 

このように、他の細胞に命令を下したりする物質のことを「シグナル物質」と言います。

 

 

 

「マクロファージ」が「サイトカイン」を放出したことで、「樹状細胞」が刺激されます。

 

 

 

すると、優秀な抗原提示細胞である「樹状細胞」は、「こんな奴がいます」と、取り込んだ敵のデータを伝えます。

 

 

 

その情報を特殊部隊の「ヘルパーT細胞」が受け取り、部下を動かすのです。

 

 

 

 

「樹状細胞」が、「自然免疫」と「獲得免疫」のシステムの橋渡しをしているわけです。

 

 

 

 

「自然免疫」は発見してから攻撃に至るまでが素早いですが、「獲得免疫」は最初は闘うまでに時間がかかります。

 

 

 

しかし、1度攻略した相手は、2度目からは一番効率のよい方法で素早く倒すことができるようになります。

 

 

スポンサーリンク

 

 

 

 

獲得免疫の戦術

 

 

ここからは「獲得免疫」の戦術を説明します。

 

 

「獲得免疫」とは、闘えば闘う程強くなるシステムで、パターンあります。

 

 

  • 体液性免疫

 

  • 細胞性免疫

 

 

「体液性免疫」は「抗体」という武器を使った戦い方で、「細胞性免疫」は抗体を使わず、細胞が直接攻撃する戦い方です。

 

 

それぞれの流れをみていきます。

 

 

 

体液性免疫

 

 

一言で言うと、「特定の敵に命中するミサイル」を使った攻撃です。

 

 

敵の情報を受け取った「ヘルパーT細胞」は、それが「敵である」と認識します。

 

 

「ヘルパーT細胞」は、「B細胞」に命令を出します。

 

 

 

 

すると工兵である「B細胞」は、「形質細胞 けいしつさいぼう」に分化します。「形質細胞」の別名は、「抗体産生細胞 こうたいさんせいさいぼう」です。

 

 

 

 

 

 

 

そして、敵の属性に合った「抗体 こうたい」という武器を製造します。

 

 

 

ちなみに、これは敵に合わせたオーダーメイドの武器なので、違う敵には効きません。おまけに、出撃準備には1~2週間の時間がかかります。その間は、他の免疫細胞が時間をかせぐことになります。

 

 

 

「抗体」が完成すると体液に放ちます。

 

 

 

 

 

「抗体」は、水に溶けやすいタンパク質でできていて、血液、リンパ液、涙、唾液、母乳に含まれています。

 

 

 

 

「抗体」は体液が循環するところならどけでもいけるので、「体液性免疫 たいえきせいめんえき」と言います。

 

 

抗体は敵(抗原)と結合すると「抗原抗体複合体」となります。

 

 

 

これが目印となることで、マクロファージに積極的に食べられるようになります。

 

 

 

抗体と抗原がくっつくことで、敵がよりおいしそうに見え、貪食細胞の食欲が増します。これを「オプソニン化」と呼びます。

 

 

 

こうして、抗原が処理された後、抗体を作る「形質細胞」は徐々に減っていきます。

 

 

 

しかし、一部は敵の記録を伝える老兵となって残ります。これを「免疫記憶細胞 めんえききおくさいぼう」と言います。

 

 

 

 

 

抗体を使った「体液性免疫」は、効率よく外敵を駆除することができます。

 

 

 

しかし、問題もあります。

 

 

 

実は、細胞の中に入ってしまった敵(抗原)は攻撃することができないのです。

 

 

 

 

 

「抗体」は細胞膜を通れないからです。

 

 

 

その為、細胞の中に入ってしまった敵を駆除する場合は、別の方法をとります。

 

 

 

細胞性免疫

 

 

 

ウイルスは自力で増殖することができないので、他の生物の細胞に侵入して、その中で増殖します。

 

 

 

 

その為、「ウイルスに感染した細胞」は、ウイルス製造工場と化してしまいます。

 

 

それはまずいので、このウイルスを退治する必要があります。

 

 

しかし、「抗体」は細胞膜を通過できないので、細胞の中のウイルスを攻撃することはできません。

 

 

 

 

 

 

なので、「抗体」は使わず直接攻撃して、汚染された細胞ごと破壊します。

 

 

 

細胞の中の敵を仕留めることができるシステムを「細胞性免疫 さいぼうせいめんえき」と言います。

 

 

 

 

流れはこうです。

 

 

 

敵の情報を受け取った「ヘルパーT細胞」は、それが「敵である」と認識します。

 

 

 

ここまでは「体液性免疫」と同じです。

 

 

 

すると、「ヘルパーT細胞」は、「キラーT細胞」に命令を出します。

 

 

 

 

「キラーT細胞」は増殖し、「マクロファージ」も集まってきます。

 

 

 

 

「キラーT細胞」が、汚染細胞を直接攻撃破壊し、その後は自然免疫の時より強力になった「マクロファージ」が、食べて処理します。

 

 

 

 

 

役目を終えると「キラーT細胞」は減っていきますが、一部は老兵となって、戦いの記録を残します。

 

 

 

 

「体液性免疫」と「細胞性免疫」は連携して働きます。

 

 

 

 

 

 

 

スポンサーリンク

 

 

 

免疫力が低下する原因になる糖質

 

 

「免疫」は優秀な防衛システムですが、弱点もあります。

 

 

以前もお話しましたが、白血球等の免疫系はブドウ糖に弱いです。

 

 

 

高血糖の環境だと活力を失ってしまうからです。

 

 

血糖値が120以上でそうなります。

 

 

主食を食べる習慣のある人は要注意です。

 

 

 

『横ちゃんのきまま日記 血糖値の上昇が免疫力の低下を招く』より引用

 

 

【糖は免疫システムを下げる】

 

 

これは何十年も前から知られて来たことです。

 

 

1970年代にはもう、研究者の間で、白血球が病原菌や細菌を貪食するためにビタミンCを必要としていることが分かりました。

 

 

白血球は、その周りと比べて50倍ものビタミンCを必要とするので、それを溜め込まなくてはならないのです。

 

 

「食細胞指数」と呼ばれるものがありますが、それは、特定のマクロファージ(大食細胞)やリンパ球がどのぐらい早く病原菌や細菌、ウイルス、がん細胞を食べてしまうか、ということを表す指標です。

 

 

1970年代に、白血球が大量のビタミンCを必要とすること、それは一般的な風邪と闘うために必要だということをライナス・ポーリング博士が発見しました。

 

 

グルコースとビタミンCが、似たような生化学的構造を持っていることは知っていますが、では糖レベルが上がるとどうなるでしょうか? それらは、お互いに細胞に入ろうと拮抗するのです。(競合阻害的)

 

 

ということは、血中に糖がたくさんあると、それだけ細胞に入れるビタミンCも少なくなるということです。

 

 

血糖値が120では、食細胞指数が75%も下がってしまいます。

 

 

ですから、砂糖と食べると、免疫システムがどれだけ下がるかを考えてみてください。

 

 

ここで我々は病気というものの根幹に少しだけ迫ることが出来ます。

 

 

どんな病気についてかは関係ないのです、普通の風邪であろうが、心血管疾患、ガン、骨粗鬆症であろうが、病気の始まりというのは、いつも細胞レベル、分子レベルで起こってくるということ、その場合、インスリンが病気の直接の原因になっているか、それに近いものである。

 

 

 

ちなみに、以下が「グルコース(ブドウ糖)」と「ビタミンC」の構造になります。

 

 

 

 

 

 

『横ちゃんのきまま日記 血糖値の上昇が免疫力の低下を招く』より引用

 

 

萩原 敦さんのFBより転載

 

~血糖値の上昇が免疫力の低下を招く~
 

(血糖値の数値から客観的な免疫力評価の数値を探る)

 

 

 

英語圏の文献で、我々の免疫力の客観的な評価をする場合に、lymphocytic index(リンパ球指数)とかphagocytic index(食細胞指数)なる指標を用い、血糖値の上昇値と関連付けて、記述されていることをよく見かける。

 

この「食細胞指数」や「リンパ球指数」という言葉自体、我が国ではあまり一般的ではないようです。

 

 

(中略)

 

 

たとえば、

 

「血糖値が120を超えると食細胞指数的な免疫力の評価をすると、約75%の免疫力がダウンする。」

 

この説は、ライナス・ポーリング博士が、はじめて世に知らしめた説だそうです。

 

ポーリング博士も研究に値する人物です。後日、改めて、彼についての言及もします。

 

つい先ごろ、比嘉さんという方のFBで、高血糖の赤血球を映像にして投稿されていましたが、その内容は、ひじょうに素晴らしいもので、血糖値が上昇すると、赤血球同士がくっついて、「連携を組み」、血管の中で、あろうことか、「血流をせき止め」、「血流を立ち往生」させることを示していました。

 

 

となると、免疫力の要である「白血球(食細胞やリンパ球他)」も「赤血球の通せん坊」にあい、免疫力を発揮できなくなる云々と述べていました。

 

 

この血糖値120と言う数値が、血流を悪化させる「赤血球通せん坊」作戦が、効果を発揮し、顕著になる数値(ボーダーライン)なんだろうと思います。

 

 

 

 

そして、白血球は細胞なので、タンパク質です。従って糖化反応にも弱いです。

 

インフルエンザ等の感染症の予防は食事が重要です。免疫力を弱らせる食品とは

 

 

 

 

 

免疫の誤作動、自己免疫疾患とアレルギーの違い

 

 

次に、免疫システムに起こる問題について考えてみます。

 

 

 

免疫系の疾患は、大きく分けて2タイプあります。

 

 

  • 自己免疫疾患

 

  • アレルギー

 

 

 

 

「自己免疫疾患 じこめんえきしっかん」とは、自分の組織を「敵」と認識して攻撃してしまう疾患です。

 

 

例えるなら「オウンゴール」です。

 

 

 

 

一方「アレルギー」は、害がない異物に対して、過剰に攻撃をしてしまう疾患です。

 

 

例えるなら「過剰防衛」です。無駄な攻撃のせいで周囲の組織に被害が波及します。

 

 

 

「自己免疫疾患」については以下の記事を、

 

炎症と自己免疫疾患について分かりやすく説明してみた

 

 

 

 

「アレルギー」については以下の記事で説明します。

 

 

アレルギーと抗体について分かりやすく説明してみた

 

重度の花粉症の人も糖質制限や栄養療法で改善できる

 

 

 

 

スポンサーリンク