アリヤが投稿した記事一覧

試してみたらこうなった

虚弱体質や慢性疾患を改善させる為に必要な情報や心得について、体験記を交えながらお話します。

投稿者:アリヤ
「美味しいと感じる食べ物は体に良い」と感覚だけで判断するのは危険です
「美味しいと感じる食べ物は体に良い」と感覚だけで判断するのは危険です

 

 

 

「“美味しい”と感じる物を食べる事が体に良いのではないか?」

 

 

 

本記事では、この疑問に対して、私の考えを説明していきます。

 

 

 

以下の記事のコメント欄で、このような質問を頂きました。全文を読みたい方はリンク先を読んで下さい。

 

 

 

 

消化に良い食品の嘘。慢性的に胃がもたれる人は糖質の過食を疑え!

 

 

 

さて、私も”気持ちいい、美味しい”をベースに食事をしたいのですが、そういった意味で行くとフルーツは確かに何もつけなくても美味しいです。

 

 

お菓子やお米のように、加工、味付けが必要なく、そのものだけで美味しく、消化もフルーツだけで食べれば普通の食事をするときより断然負担を感じません。

 

 

すぐお腹が空きます。

 

 

ただ、糖質が高いのは紛れも無い事実です。特に果糖は危険だという記事もこちらで拝見いたしました。

 

 

私がフルーツのみを食べていた時はお肉も食べていませんでしたので、あっという間に痩せ細り、身体はかなりの低血圧でした。栄養不足ももちろんですがこちらのHPを拝見した今では糖化が原因だったのかもと思っています。

 

 

しかし、人間は草食動物ではなく肉食だと仮定して、糖は作り出せるから食物からはそんなに摂取しなくていいとして、何故甘い物は美味しく感じるのでしょうか。

 

 

美味しくないはずのビールやタバコを脳で楽しむ私たちではない、動物に近い未熟な子供でも、甘い物を欲しがります。それは、身体が必要と感じるからなのかな、と考えます。

 

 

人間は脳をフルパワーで活動させると餓死するという情報もある程、脳の作用は計り知れません。

 

 

そんな人間の舌は、様々な味覚を持っています。

 

 

猫は甘みを感じることが出来ません。それは、猫は肉食であり糖質が必要ないからと考えます。

 

 

鳥は甘みが分かるそうです。鳥は穀物や木の実などの糖質を摂取するからでしょうか。

 

 

私は舌の機能も、消化器官と連動しているのかなと考えています。

 

 

必要なものは心地よい感覚、辛味や苦味などは苦痛に、そういったフィルターの役割をしているのだと思います。

 

 

 

ちなみに、「果糖」が体に悪い事を話している記事は以下になります。

 

 

ローフーディストやベジタリアンの真実。肉を避け野菜や果物を多く食べる人に見られる肌の特徴と、健康上の問題

 

 

 

美味しいものは体に良いのではないか…と考えている方は意外と多いです。私も何度も聞いてきました。

 

 

 

これまでは、美味しいものを食べたいから、そういう事にしておきたいだけで、深く考えずに言っている…という人がほとんどだったので、あえてこの意見に対して反論はしてきませんでした。

 

 

 

 

しかし、美味しいと思う食べ物が安全だとか、体の構造的に合っているのかもしれない…と「知識」「健康法」として広がるなら話は別です。

 

 

 

このように、感覚を過信すると健康を損ねる危険性があるので、その説に信憑性がない理由を記事にしておくことにしました。

 

 

 

 

スポンサーリンク

 

フルーツが美味しいわけ

 

 

本題に入る前に、フルーツは美味しくて胃に負担が少ない…という見方について注意しておきます。

 

 

 

確かに、フルーツは何もつけなくても美味しいですが、そうなるように品種改良されていることを忘れてはいけません。

 

 

 

これはフルーツだけではなく野菜にも言えることですが、人間が手を加える前の果物や野菜は、苦かったり、食べる部分が少なかったり、硬かったり、小さかったり…現代私達が食べている物とはまるで違います。

 

 

 

 

 

 

 

ちなみに、品種改良は現在進行形で行なわれており、テレビで特産の果物が紹介される場合は、甘く品種改良した事が誇らしげに語られています。

 

 

 

そして、仮に原種のフルーツが美味しかったとしても、それは、それを食べる動物の体の為ではなく、植物側の事情があるのです。これについて、詳しくは後半で説明します。

 

 

 

そしてフルーツが消化に良いのは、「食物酵素」の力です。

 

 

 

私も糖質制限をする前は、胃が弱かったので、食べる前に「健康食品の酵素」を飲んだり、それがない時は、フルーツや生野菜を先に食べるなどして消化しやすくしていました。

 

 

 

酵素の力で消化が良くなるのは事実ですが、フルーツの場合は「糖化」という副作用付きです。

 

 

 

 

 

糖質制限を始める前の私は、果糖の怖ろしさを知らなかったので、間食をお菓子(チョコレート、クッキー、アイスクリーム等)からリンゴに変えたのですが、半年後に急にシワが増えました。

 

 

果糖が少ないお菓子では長年食べてもシワは増えなかったのに…です。

 

 

 

それまでに「お菓子で蓄積したダメージ」があったことを考慮しても、果物はわずか半年でそうなったので怖いと思いました。

 

 

 

果糖はブドウ糖の10倍糖化するというのは信憑性があります。

 

 

 

 

というわけで本題です。

 

 

 

 

感覚を頼ることが危険な理由

 

 

 

「感覚だけを頼りに、体に良いか悪いかを判断する事」を、信憑性が低くて危険だと思う理由を簡潔に述べます。

 

 

 

1、美味しいと感じる食べ物が結果的に体に良いこともあるが、それはあくまで結果論なので、「美味しい物=体に良い」わけではない

 

 

 

2、人間の感覚は当てにならないし、狂う事もある

 

 

 

3、「気持ち良い、美味しい=体に良い」なら、これらを我慢することが悪い事になる。しかし、「気持ち良いや美味しいを我慢するストレス」がどれほど酷いストレスなのかハッキリしない

 

 

 

 

順番に説明していきます。

 

 

 

スポンサーリンク

 

 

 

「美味しい物=体に良かった」は、結果論

 

 

 

まず、体に良い物を「食べたい」と思ったり、それを食べた時に「美味しい」と感じることは、あるかないか…と考えたら、これは実際にあります。

 

 

 

ここで言う「体に良い」とは、体に足りない栄養素や、必要な栄養素の事です。

 

 

 

例を挙げます。

 

 

今、私は鉄サプリを飲んでいるので、鉄が不足することはありません。しかし、鉄サプリを飲んでいない時代は、生理で鉄を失った後にレバーを食べると、いつも食べた時より美味しく感じていました。

 

 

 

これは、必要なものが美味しく感じる現象です。

 

 

 

 

また、糖質を食べていた時代、間食で甘い物を食べすぎた場合、いきなり気分が悪くなったりすることもありました。

 

 

 

これは、不要なもの、足りたものが美味しく感じなくなる現象です。

 

 

 

 

…このような体験は誰でもあるでしょう。だから、

 

 

 

  • 「美味しい」と感じる食べ物は、体に良い、必要な栄養素

 

  • 「美味しくない」と感じる食べ物は、体に悪い、不要な栄養素

 

 

 

…といった、感覚を重視する説は、100%間違っているわけではありません。

 

 

しかし、このような体験は、あくまで結果論です。

 

 

 

美味しく感じたものが、たまたまその時の体に必要な栄養素だった、体に良かった…という事に過ぎず、それ以上でも、それ以下でもありません。

 

 

 

 

別に「気持ち良い、美味しいと感じる食べ物が体に良い」という規則性があるわけではないのです。

 

 

 

何故なら、「気持ち良い、美味しいと感じる物が体に悪い」事もあるからです。

 

 

 

 

例えば、糖質、煙草、薬物、アルコール…これらは快楽を得られますが、体にダメージを与える物質であり、体に悪いです。ちなみに、これらは全て植物性です。

 

 

 

 

感覚は当てにならない

 

 

 

私は糖質過多によって体を弱らせたので糖質の害をよく知っていますし、他の人が同じようにならないように、こうして情報も発信しています。

 

 

 

ハッキリと糖質の害が分かっている私でも、たまに糖質を食べると脳は「美味しい」と感じます。

 

 

 

最初はあまりの甘さにビックリしますが、しばらく繰り返すと慣れてくるのです。

 

 

 

そして、私は糖質を食べる場合、サプリを飲まないと、疲れやすくなったり、目が痒くなったり、吹き出物がでたり…と体に異変も起きます。

 

 

 

それでも味に関して言えば、美味しいです。

 

 

 

先ほど、鉄が足りていない時にレバーを美味しく感じた…という話をしましたが、その時に感じた「体に必要だったから美味しい」と、

 

 

 

先日旅行で普通に糖質(ラーメンやインド料理)を食べた時に感じた「快楽の美味しい」は、

 

 

 

同じ「美味しい」感覚です。

 

 

 

 

一応言っておくと、前者は動物性食品なので「動物食性動物である人間の体」にとって良いですが、後者は糖質がたっぷり含まれているので人間の体にとって悪いです。

 

 

 

しかし、それを感覚的に「こっちの美味しいは体に良いけど、こっちの美味しいは体に悪い」…なんて区別はつかないわけです。

 

 

 

見分けられる特殊能力がある人は別ですが、私にはそんなものないので、知識や情報を元に判断します。

 

 

 

他の人もほとんど同じでしょう。感覚で「良い結果をもたらす快楽」と、「悪い結果をもたらす快楽」の区別はできていません。

 

 

 

ただ「美味しい」「気持ちがいい」「楽しい」「楽」という感覚があるだけです。

 

 

 

能力がそうなので、「美味しかったものがたまたま体に良かったケース」だけを取り上げて、それが全てに当てはまるだろうと勘違いするのは危険なのです。

 

 

 

占いの結果で、「当たっている事」と「外れている事」があったとします。

 

 

 

冷静な人は、「当たっている事」と「外れている事」を比較しますが、そうじゃない人は、「当たっている事」だけに注目しがちです。

 

 

 

両方のケースがあることを忘れてはいけないのですが、人は都合の良かったものだけを覚えようとします。その方が精神的に楽だからです。

 

 

 

そして、人間は良いものに反応するのではなく、甘やかしてくれるもの、楽をさしてくれるものに反応しやすい…という事も忘れるべきではありません。

 

 

 

全員がそうではないですが、そういう傾向が強いです。

 

 

 

実際、世の中を見わたしてみると、そういうサービスや商品が売れています。あらゆる分野で、人間の徳を高める物よりも、堕落させる物の量が圧倒的に多いです。

 

 

 

 

動物はどうか分かりませんが、人間に飼われているペットを見ると同じような感じがします。

 

 

 

美味しい、気持ちが良いと感じる物を選択しても、実態は「体に良い物」ではなく、「堕落させる物」である可能性もあるので、感覚だけを過信しない方が良いのです。

 

 

 

そして、感覚だけに頼るのが良くない理由は、「当てにならない」という理由だけではありません。

 

 

 

仮に「正常な感覚」だったとしても、簡単に狂ってしまうからです。

 

 

 

スポンサーリンク

 

 

 

体に悪い状態を心地よいと感じてしまう例

 

 

の人は、「体を傷つける行為」を気持ち良いと感じるようです。

 

 

某番組で、怪我をした時も麻酔なしで縫ってもらう…と笑いながら語っていた姿を見ましたが、理解に苦しみます。

 

 

その他のエピソードも痛々しいので、その方の健康が心配になったものです。

 

 

 

人の感覚は、ダメージを気持ち良いと感じることもある…という良い例です。

 

 

 

DVを受けながらも、時々優しくしてくれるから別れられない人もいます。これも理解に苦しみます。

 

 

明らかに人生にとってマイナスなのに、それを「居心地が良い」と感じる事もあるようです。

 

 

 

「気持ち良い」と感じることは体に良い…という考えが危険なのはこれでお分かりだと思います。

 

 

 

…まぁ、これらは比較的少ない例なので、もう1点、誰でも陥る可能性のある例を紹介しておきます。

 

 

 

 

それは姿勢です。

 

 

 

整体やカイロプラクティック等の治療に通ったことがある人なら分かると思いますが、体が歪んだ状態の時に、無理矢理正しい姿勢にすると、体に違和感を感じます。

 

 

 

最初に体の状態を診て貰う時に、「真っ直ぐだと思う姿勢をとって下さい」と言われて姿勢を正すと、自分では真っ直ぐのつもりなのに、客観的に見ると歪んでいるのです。

 

 

 

で、「これが正しい位置です」と、体を動かされると、そっちの方が歪んでいるような気がします。

 

 

 

また、治療しても、直後は姿勢が良くなるのに、その後普通に生活しているだけですぐに悪い姿勢に戻ることがあります。

 

 

 

なんで簡単に戻ってしまうのか…ですが、

 

 

 

「不自然な姿勢」をとり続けていると、「正しい姿勢」を維持する為の筋肉が衰えたり、「悪い姿勢」を維持するような筋肉のつき方になります。

 

 

 

それだけでなく、脳、神経がその悪い姿勢を「正しい」と勘違いするので、不自然な姿勢が形状記憶されてしまいます。

 

 

 

こうなると、形状記憶のせいで、治しても、治療が終わった直後から、悪い姿勢の行動パターンを無意識にとってしまいます。その結果、元に戻ってしまうのです。

 

 

 

このような状態の人は、悪い姿勢を楽に感じたり、正しい姿勢に違和感を感じたりするようになります。

 

 

 

例えば、いつも猫背の人は、真っ直ぐな姿勢だとしんどく、猫背の時の方が楽なのです。感覚的には…。

 

 

でも、体の為にはその楽な状態を続ける事は良くないです。

 

 

 

コレもまた、体は「健康に良い状態」を良いと感じるとは限らない例です。

 

 

 

スポンサーリンク

 

 

 

美味しいものを我慢するストレスがどれほど酷いストレスなのか

 

 

ここまで「気持ち良い、美味しい」という感覚と、「体に良い事」は必ずしも一致しないという事をお話してきました。

 

 

 

「気持ち良い、美味しい」という感覚を重視して、好きなものばかり食べると、選択した内容によっては病気になる…的な事を言うと、かなりの確率で返ってくるのがこの言葉です。

 

 

 

我慢は体に良くない、我慢をすることで、かえってストレスになる

 

 

 

 

・・・これについても、ツッコミを入れたいと思います。

 

 

 

 

確かに我慢もが過ぎればストレスになります。ストレスによって血糖値も上がります。ですが、ただの我慢は危険レベルとしては大したことありません。

 

 

 

これが、「空気」とか「水」とか「必須栄養素」とか、生命維持に直結するものの我慢であれば、確かにダメージがでかいです。

 

 

 

 

しかし、そうではない「生命維持に直結しない欲求」が満たされないぐらいでは、大したダメージはありません。それしきの事で病気になっていたら、その生体は欲しいものが簡単に手に入らない自然界では生きていけません。

 

 

 

ハッキリ言って、「体に悪い物、不要な物を我慢するストレスにより生じたダメージ」より、「物理的に体に悪いものを摂ることによるダメージ」の方が圧倒的に大きいです。

 

 

 

煙草を例にすると、「煙草を我慢するストレス」よりも、「煙草を吸うことで生じるダメージ」の方がでかいわけです。

 

 

 

なのに、後者を過小評価し、前者を重篤な事であるかのように語る人が多すぎます。

 

 

 

このように言っておけば、我慢をしなくても良いから、多くの人は同調し納得してしまうのです。その方が楽だからです。

 

 

 

正直に「我慢はしたくない」と言えばいいのに、依存や堕落を認めようとしません。

 

 

 

 

「ストレスになる」という言葉が、我慢しなくてもいい大義名分になっているのです。

 

 

 

 

 

このように言うと、「いや、ストレスで体調を崩す事はあるんだ」と思う人がでてくるので、それについても考えてみます。

 

 

 

 

病気に発展するほどのストレスとは

 

 

 

世の中には、心療内科とか精神科とかカウンセリング等があるので、心の状態、ストレスが体に影響している事は否定しません。

 

 

 

しかし、「健康を損ねるほどのストレス」と、「健康には影響しないストレス」があります。

 

 

 

「健康を損ねるほどのストレス」は、例えば、

 

 

 

  • 戦争で悲惨な体験をしたストレス

 

  • しきたりによって生まれながらに自由がないストレス

 

  • 健康を損ねるような奴隷的な労働によるストレス

 

  • いじめられる

 

  • 抵抗力の弱い年配者に精神的な負担をかける

 

 

 

 

 

…等です。このレベルの怒りや恐怖などのマイナス感情にさらされると、体までおかしくなる…というなら頷けます。

 

 

 

それに比べ、以下はどうでしょう。

 

 

 

 

  • 美味しい食事を我慢するストレス

 

 

 

・・・

 

 

ストレスの感じ方は人それぞれだから大小は関係ない・・・と言われますが、私はこれらを同じストレスとして扱うのは違うと考えています。

 

 

 

悪いですが、後者程度でどう体にダメージがあるのか教えて欲しいです。

 

 

 

私は体が弱く有害物質に反応しやすい体質ですが、「美味しい食事を我慢するストレス」だけで具合が悪くなったことは一度もありません。

 

 

 

体が弱くても、この程度のストレスではダメージを受けないものです。だから、安心して下さいと声を大にして言いたいです。

 

 

 

付け加えると、「必要なもの」と「必要ではないけど欲しいもの」は違います。

 

 

前者が足りなくて具合が悪くなることはあっても、後者が手に入らなくて具合が悪くなる事はほぼないでしょう。

 

 

 

ほぼ…といったのは「依存してしまった場合」はどうなるか分からないからです。

 

 

 

年配の人と話をすると「昔はストレスという概念が無かった。現代は、なんでもかんでもストレス、ストレスといって過保護になりすぎている」という話をされます。

 

 

厳しいようですが、この考えは一理あると思っています。

 

 

 

私は、病気になってしまうような、生活を圧迫するような、我慢したところで何も得るものがないようなストレスは避けるべきだと思います。

 

 

しかし、そうじゃないような事象まで無理矢理ストレスにして大騒ぎをする事は良くないと考えています。

 

 

 

これでは、人はいつまでたっても未熟なままで強くなりません。甘えるから弱くなる事もあるのです。

 

 

 

また、人間(動物)は、基本的に「甘えさせてくれる環境」に弱いということも強調しておきます。

 

 

 

スポンサーリンク

 

 

 

動物の堕落を利用する植物の罠

 

 

 

ここからは、

 

 

人間は動物食性動物で、糖は「糖新生」によって作り出せるから食物からは摂取しなくていい。それなら、何故甘い物を美味しく感じるのか、必要だからじゃないのか?

 

 

 

・・・という問いに答えていきます。

 

 

 

 

糖質は脂質に比べると低エネルギーですが、エネルギーに変わるスピードが早いです。

 

 

即効性という点では優れています。

 

 

 

 

 

 

 

それ故に、自然界の中で糖質を見つけた場合、エネルギー的には「ラッキー食材」です。その為、脳が心地よく美味しく感じるのでしょう。

 

 

 

ただし、野生の食材ですから、糖質といっても現代のように多くないです。

 

 

 

糖質がめったに手に入らない…という前提では、美味しく感じて食べたとしても害は小さいです。

 

 

 

 

これは、食べる人間(動物)の視点で考えた話です。

 

 

 

次に「ラッキー食材」の植物(糖質)の立場から考えます。

 

 

 

ここまで繰り返し、人間(動物)は良い物よりも甘えさせてくれる環境に弱く、堕落しやすい事を述べてきましたが、その人間(動物)の習性を利用して罠にかけて生存しているのが植物です。

 

 

 

動けない植物は、種や花粉を何かに運んでもらう必要があります。

 

 

 

 

「品種改良される前の果物」がどれほどの甘みがあったか分かりませんが、今ほどでなくても、他の部位に比べて、実は美味しかったと仮定します。

 

 

 

実が他の部位より美味しいのは、その中の種を運んでもらうために、動物に手に取ってもらう必要があるからと考えられます。

 

 

 

味に全く魅力がなければ運んでもらえません。

 

 

 

昆虫に対しては、蜜を提供することによって花粉を運ばせています。

 

 

 

何故甘く美味しく感じるのか?…というよりも、

 

 

 

植物の戦略で、利用する動物を罠にかけるために適した武器(甘く感じる)を持っているだけなのだと考えています。

 

 

 

 

 

人間が他の動物を罠にかける時も、「その動物が好む仕掛け」を用意します。

 

 

 

動物から見れば、罠であっても「好物」は好物です。

 

 

 

ここで「気持ちいと感じるもの=体に良い」という固定概念で罠を見ると、「好物だから体に良いに決まっている」という発想しかできません。

 

 

 

仮に、危険だと分かっても、「何故、危険そうなのに、魅力的に見えるのか?」という発想になります。

 

 

 

「何故、果物は美味しく感じるのか?」と考えるのは、それと一緒です。

 

 

 

この罠は魅力的だから体に必要ではないのか…と動物が思うなら、それは罠にハマっているだけです。

 

 

見方を変えると、このような違いになります。

 

 

 

×・・・「食べる側」にとって体に良いから美味しく感じる

 

 

・・・「罠にかける側」が、「種を運んで欲しいターゲット」が美味しいと感じる罠を仕掛けている

 

 

 

 

ちなみに、種を運んでもらいたいけど、食べられすぎては困るので、食べた動物が弱る物質である事も重要です。

 

 

 

スポンサーリンク

 

 

 

糖質を「美味しい」と感じている時の脳内

 

 

 

 

一応、甘いものを食べて美味しいと感じる時、脳で何が起こっているのか説明された記事を紹介しておきます。

 

 

 

『Daiwa ドクターからの健康アドバイス 糖質と甘味は中毒になる』より引用

 

 

脳内報酬系が活性化されると快感を感じる

 

 

 

人間を含めて動物は「気持ちがよい」とか「快感」を求めることが行動の重要な動機になります。

 

 

このような快感が生じる仕組みは脳内にあり「脳内報酬系」と呼ばれています。

 

 

脳内報酬系は、人や動物の脳において欲求が満たされたとき、あるいは満たされることが分かったときに活性化し、その個体に快感の感覚を与える神経系です。

 

 

(中略)

 

 

糖質と甘味は脳内報酬系を刺激する

 

 

糖質も甘味も薬物依存と同じ作用をすることが動物実験などで明らかになっています。

 

 

快感を求めて甘味や糖質の摂取を求め、次第に摂取量が増え、摂取しないとイライラなどの禁断症状が出てきます。

 

 

ラットの実験で、コカインよりも甘味の方がより脳内報酬系を刺激するという結果が報告されています。つまり、甘味はコカインよりも中毒(依存性)になりやすいという実験結果です。

 

 

砂糖の多い食品や飲料の過剰摂取は甘味による快感によって引き起こされ、これは薬物依存との共通性が指摘されています。そこで、甘味による依存性(甘味中毒)と薬物に対する依存性(薬物中毒)のどちらが強いかを比較する目的で実験が行われています。

 

 

この実験では、ラットを2つのレバー(ドアの取手)があるケージに入れ、一つのレバーを押すとコカインが静脈注射され、もう一つのレバーを押すとサッカリンの入った水を20秒間だけ飲めるような仕組みを作って実験しています。

 

 

するとほとんどのラットはサッカリンの入った水を飲むレバーを多く押したという結果が得られたのです。

 

 

サッカリンは砂糖の200倍以上の甘味があるカロリーゼロの人口甘味料です。

 

 

コカインは中枢神経を興奮させて強い快感を得るので薬物依存症(薬物中毒)になりやすい覚醒剤です。

 

 

サッカリンの代わりに砂糖でも同じ効果でした。

 

 

サッカリンに対する嗜好はコカインの投与量を増やしても変わらず、コカイン中毒になったラットを使ってもサッカリンの方を選ぶという結果が得られました。

 

 

つまり、この実験結果は、甘味に対する中毒はコカイン中毒よりも勝るということを示しています。

 

 

(中略)

 

 

糖質は脳内麻薬の産生を増やす

 

 

グルコースは脳神経の主なエネルギー源です。

 

 

したがって、糖質の多い食事で血糖が上がることは脳にとっては快感となり、報酬系を活性化するように糖質を求めるようになります。また、甘味自体が味覚神経系を介して報酬系を活性化します。

 

 

さらに、甘味物質や糖質は脳内麻薬と言われるβーエンドルフィンの産生を増加させることがラットを用いた実験で報告されています。

 

 

 

 

結論

 

 

 

美味しい、気持ち良いと感じるものが、体に良いことはあります。

 

 

しかし、それを過信するのではなく、「そういう事実もあるだけ」…と捕らえておいた方が冷静な選択ができます。

 

 

 

気持ち良いという感覚を重視するなら、その結果体に何が起こったのかを確認することが重要です。

 

 

スポンサーリンク

 

旅行中は糖質制限を一時的に止めて、サプリメントだけにしました

 

スーパー糖質制限を始めて丸3年が経ちましたが、その間、たまに外食や人との付き合いで糖質を普通に食べることは何度かありました。

 

 

 

 

私の場合は本当にたまにです。

 

 

 

 

ですが今回、このゴールデンウィークに旅行と里帰りをすることになりました。

 

 

 

 

つまり、約10日ほどいつもの食事制限が難しくなるわけです。

 

 

 

まぁ、やろうと思えばどんな状態でもストイックに貫くことはできますが、せっかくの機会なので、今回は「健康」ではなく「楽しむ事」を第一目的にして、あえて普段しない不摂生をしてみることにしました。

 

 

 

 

スーパー糖質制限を始めてから、ここまで羽目を外して糖質を多く摂取したのは、今回が始めてです。

 

 

 

 

 

  • 糖質制限とサプリの併用でかなり体が丈夫になった事

 

 

 

  • 糖質中毒を抜けているので、一時的に食べても元に戻す自信があった事

 

 

 

  • 糖質を食べてもサプリを使って代謝しきれば被害を最小限に食い止められる事

 

 

 

 

…等、害を最小限に食い止める事ができるという自信があったのでできたことです。

 

 

 

 

・・・といっても、私のことなので全くの無防備ではありません。

 

 

 

 

日程が決まっていたので、1ヶ月前から、旅行中の食事によるダメージに備えて、体を丈夫にしておくことにしました。

 

 

 

 

そこで、何をやったかについて記述しておこうと思います。

 

 

 

スポンサーリンク

 

 

 

旅行の一ヶ月前から準備したこと

 

 

 

具体的に何をやったのかというと、栄養の強化です。

 

 

 

栄養には様々な効能があります。

 

 

 

これらを目的を持って摂取する場合、バランスを基準にするのではなく、絶対量を飲む事がポイントになります。

 

 

 

プロテインにしろビタミンにしろ、足りないものを必要なだけ補うので、不足の状態によってはかなりの種類、かなりの量を飲む事になります。

 

 

 

これを「メガプロテイン」とか「メガビタミン」とか言ったりします。

 

 

 

私は糖質制限を始めた時からプロテインを飲んでいますし、ビタミンやミネラルのサプリは2017年の1月から飲んでいます。

 

 

 

ですが、まだ種類も少なく、量も「メガ」にはしていませんでした。

 

 

 

 

私は何を飲んでどんな結果になったか…というのをハッキリさせたいので、これまでだいたい3ヶ月に1種類増やすようにしてきました。

 

 

 

1つの効果を実感して、次のを試すようにしています。

 

 

 

 

もし、何かの疾患を抱えていて、それを1日も早く改善したい・・・という動機があればいきなりメガにするでしょうが、私の場合は糖質制限だけでかなり体が丈夫になったのでそこまで焦りがありません。

 

 

 

それよりも、何を飲んでどうなるのか、本当に言われているような結果になるのかということを体験する方に関心があります。

 

 

 

あれもこれも1度に増やすと、良い結果があっても何が効いたのか分からないですし、万が一異変が起きた場合、何故そうなったのか原因が特定しずらくなります。

 

 

 

なので、年齢がいっていて少しでも健康状態を維持して欲しい身内には、いきなり必要なサプリを数種類試してもらいましたが、私はこれまで少しずつ試していました。

 

 

 

 

2018年の3月始めの時点では鉄、ナイアシン、C、E、B、マグネシウム(亜鉛、D、カルシウム入り)を飲んでいました。

 

 

 

それを今回、例外的に種類を増やし、量もややメガにしました。

 

 

 

目的は、10日間の不摂生に備えて少しでも体を丈夫にしておくことだからです。

 

 

 

フェリチンはしっかりあるので、鉄以外のサプリを補強しました。

 

 

 

  • 「ビタミンE(400IU)」は、1日2錠から3錠に

 

  • 「ビタミンC(1000mg)」は、1日3錠から6錠に

 

  • 「ナイアシン(500mg)」は、3錠から4錠に

 

  • 「ビタミンB50コンプレックス」は1日2錠から4錠に

 

  • 「マグネシウム(800mg)」は2錠から3錠に増やしたところお腹が緩くなったので2錠で

 

 

そして、これまで私が全く取ってこなかったビタミンA、ビタミンD、オメガ3、メガハイドレート、パントテン酸を加えました。

 

 

 

  • 「ビタミンA(10000IU)」は、1日4~5錠

 

  • 「ビタミンD(1000IU)」は、マグネシウムのサプリにも含まれているので2~4錠

 

  • 「オメガ3」は、1日1錠

 

  • 「メガハイドレート」は、1日2錠

 

  • 「パントテン酸(100mg)」は、1日4~5錠

 

 

 

 

 

いつもより少しメガです。

 

 

結構飲む量がアバウトですが、これは「よく分かっていないもの」をいきなり増やすので、その日の体調や様子を見ながら調節、加減している為です。

 

 

というのも、何かを増やすと良いこともある反面、これまでになかった変化が表れることがあるからです。

 

 

 

例えば、私は「ビタミンC」を昨年の9月から始めて、毎日3錠飲んでいました。これだとなんともないのですが、たまに4錠以上飲むとお腹が緩くなることがありました。

 

 

 

以前はです。

 

 

 

しかし、マグネシウムを飲み始めると、同じCを4錠飲んでも、6錠飲んでもお腹が緩くならなくなりました。

 

 

 

でもマグネシウムを3錠飲むと、最初の2日くらいはなんともないのですが、3日目ぐらいからお腹が緩くなります。

 

 

Cもマグネシウムもどちらも下剤のような効果があることは知っていますが、飲み方で違いが現れます。

 

 

 

Cだけ飲んでいた時とは違います。

 

 

 

マグネシウム自体が影響を与えているのか、それとも私の飲んでいるマグネシウムサプリメントに一緒に含まれているDや亜鉛やカルシウムが影響しているのかよく分かりませんが、おもしろいなと思いました。

 

 

 

このようなことがあるので、変化を見ながら加減するのは重要だと考えています。

 

 

 

ここから、今回始めて飲んだサプリについて、その選択理由を書いておきます。

 

 

 

 

ビタミンDとビタミンA

 

 

ビタミンDを飲んだのは免疫力を下げない為です。

 

 

近年、体調を崩すことはほとんどなくなりましたが、それでも当日体調を崩してはいけないので、免疫に深く関わっているDを飲みました。

 

 

 

用心の為です。

 

 

 

そしてDを飲む場合は、Aを合わせて飲んだ方が良いのでAも追加です。

 

 

 

2017年12月に、四六時中咳をしていた祖母にビタミンAを飲ませたところ、4~5日くらいで嘘のように咳をしなくなりました。

 

 

 

 

呼吸器系の病院で見てもらっても問題はなく、「アレルギーじゃないか」と言われていて解決しなかったのですが、いつも飲んでいるプロテインを少し増やしてもらい、その上でAを飲み始めたところ簡単に治ってしまいました。

 

 

 

Aは粘膜系を丈夫にするとその経験から分かっていたので、絶対に飲んでおいた方がいいだろうと思いました。

 

 

 

 

オメガ3とメガハイドレート

 

 

DやAは、マグネシウムの次に飲む予定のサプリだったので、先にちょっと体験してみた…というわけです。

 

 

 

 

で、その候補には上がっていなかったけど、以前から気になっていて、この機会にちょっと試したみたいと思って加えたのが「オメガ3」と「メガハイドレート」です 。

 

 

 

動機は藤川医師の「ミトコンドリアを活性化させる方法(プロフェッショナル版) H27.12.12改訂」になります。

 

 

 

『藤川徳美医師facebook2015年3月22日』より引用

 

 

1)高タンパク/低糖質食~必須!

 

1食糖質20g以下(追加インスリン放出しない5g以下が理想)

 

肉と魚は1対1、毎日肉も魚も

 

週1回、貝類(亜鉛)、イカかタコ(タウリン)、鮭(アスタキサンチン)

 

 

 

2)水素

 

メガハイドレート(水素サプリ)

 

レッドハイドロゲン(水素水)

 

リコエンザイムスパソルト(水素風呂)、週2回

 

 

 

3)朝

 

メグビープロ(プロテイン)+メグビーミックス(B,C)

 

nowセレニウム(セレン)

 

フォリアミン(葉酸)

 

メチコバール(B12)

 

マグミット(Mg)

 

ミヤBM(宮入菌)

 

Doctor’sBestベンフォチアミン(脂溶性B1)、週1回

 

 

 

4)夜

 

 

nowパルミチン酸アスコルビル(脂溶性C)

 

nowミックストコフェロール400IU(E)

 

nowコエンザイムBコンプレックス(B,コエンザイムQ10、αリポ酸),隔日

 

aquavitaマルチビタミン&マルチミネラル、隔日

 

solarayナイアシン500mg

 

プロマックD(亜鉛)

 

ピューリタンズ プライド ビタミンD10000IU

 

 

 

5)オプション

 

ミネラクール(超ミネラル水)

 

nowアスタキサンチン

 

nowレシチン

 

nowL-カルニチン

 

 

 

6)油

 

ω3脂肪酸:ロトリガ、nowウルトラオメガ3、(インカインチオイル)

 

中鎖脂肪酸:バター、ラード、(ココナッツオイル、MCTオイル)

 

 

 

7)スキンケア

 

シャンプー、ボディソープは使わない

 

 

 

8)数値目標

 

インスリン<5

 

ケトン体>1000

 

EPA/AA>0.7

 

 

 

 

 

ここに書いてあるもの全部を飲むのはコストがかかって大変なので、今回は金額的に安くて、今私に不足していそうなものを選択しました。

 

 

魚の不足と、酸化に対する警戒心が以前より甘くなっていたので、オメガ3とメガハイドレートがいいかなと思いました。

 

 

 

 

オメガ3

 

 

オメガ3を選んだのは、肉を食べる機会が増えた分、魚を食べる回数が減ったからです。

 

 

『藤川徳美医師facebook2015年11月23日』より引用

 

 

FBFの吉富信長さんの記事が出ていました

 

https://www.facebook.com/nobunaga.yoshit…/…/502642726582767…

 

良い油と良い塩を取りましょう

 

 

1)油

 

飽和脂肪酸とω3が良い油

 

飽和脂肪酸はなんと言ってもバター、ココナッツオイルなどもこれに含まれます

 

発酵バターが美味しい(ただし高価)

 

 

普通に食べているとω6が過剰になります

 

ω3/ω6=EPA/AA(アラキドン酸)

 

魚を食べない欧米人では、0.01~0.1

 

日本人は0.3

 

専門家は0.25~1.0が理想値だと言っています

 

自分の場合、3年前が0.3

 

3年間毎日Nowウルトラオメガ3、もしくはロトリガ(処方薬)を続け、0.8前後

 

でもこれ以上は上がらない

 

もう満たされておりフィードバックがかかっているのでしょう

 

1にするには無理です

 

 

 

元々魚料理が好きだったのですが、今は肉料理が圧倒的に増えました。その為、魚を食べる機会が減りました。

 

 

プロテインスコアで評価すると、魚<肉なので、「タンパク質」的には肉の方が良いです。

 

 

魚ばかりをあてにして肉が少ない食生活をおくると、タンパク質不足の症状があちこちに現われます。

 

 

 

過去にその失敗をしているので、そうならないように、どうしても肉を多く摂ってしまいます。

 

 

 

しかし、これに「脂肪酸」という視点を加えて両者を比較すると評価が変わってきて、魚が不足しすぎるのも要注意ということになります。

 

 

 

肉の調理に慣れると、魚は面倒くさいし、お腹がいっぱいになるまで食べようと思ったら何匹も食べないといけなくてコストがかかる、捨てるところが多すぎてもったいない…等と感じるようになり、肉を買ってしまうことが多いです。

 

 

 

 

今回飲んだNowのウルトラオメガ3は、色んな人が言われているように、とにかくサイズが大きいです。

 

 

 

メガハイドレート

 

 

メガハイドレートは、「マイナス水素イオンサプリ」でカプセルです。

 

 

水素は、以前「水素水」を飲んでいたのですが、カプセルタイプは始めてになります。

 

 

これは、以前から気になっていたのですが、率先して飲むつもりのないサプリでした。

 

 

「水」は無害な感じがしますが、サプリの形状で、しかも海外の製品だと何かよく分からないものが含まれていそうで警戒していたのです。

 

 

 

しかし、実際に海外の他のサプリを飲み続けて結果がでたことで、飲んでみたいと思うようになりました。

 

 

 

私は水素水の良い効果を体験しているので、このサプリも効果があるのではと期待していました。

 

 

 

そういうわけで、メガハイドレートを試してみることにしたのです。

 

 

 

これはいつも利用しているiHerbでは取り扱っていないので、アマゾンで購入しました。海外から届きます。

 

 

 

メガにするのはゴールデンウィークの1ヶ月前だけの期間です。その後、サプリは通常に戻すので、今回は1つだけ注文しました。

 

 

 

ちなみに、気になったのでレッドハイドロゲンも試しに1個購入。こちらは国内なので到着が早かったです。

 

 

 

 

パントテン酸

 

 

私は糖質を食べると吹き出物がでるので、ニキビの改善に効果があるパントテン酸も飲んでみることにしました。

 

 

 

 

スポンサーリンク

 

 

 

 

サプリやプロテインを一時的にメガにした効果

 

 

 

メガにしたのはサプリだけではありません。

 

 

 

 

サプリ以外では、2ヶ月前からバターを1日50gから70~80gに増やし、1ヶ月前からは、いつも飲んでいるプロテインを1日30gから60gに増やしました 。

 

 

 

 

で…、

 

 

 

 

結果どうなったかというと、旅行前は特に大きな変化はありませんでした。

 

 

 

 

何か面白い変化があるのではと期待したのですが、既に健康だとこんなもんかもしれません。また、増やした量が少ないのも大きな変化がない原因かもしれません。

 

 

 

 

ただし、小さい変化はありました。

 

 

 

顔に2つシミがあるのですが、その内の1つが明らかに薄くなりました。

 

 

 

以前以下の記事で、ビタミンCやビタミンEでは肌は綺麗になるが、「すでにできたシミ」は消えないのでは…と書いた事がありますが、読者の方がコメントで言われていたように、量を増やしたり根気よく飲み続けていれば本当に消えるかもしれません。

 

 

 

私が2017年に飲み始めたサプリメントと、変化した健康状態

 

 

 

 

ただ、正直言って、色々増やしたのでその中のどれが効いたのか分かりません。

 

 

 

 

 

気になったのは、2つあるシミのうち、1つはハッキリと薄くなったのに対して、もう1つのシミはびくともしていない事です。

 

 

 

両者は性質が違います。

 

 

 

シミには種類があります。

 

 

 

『藤川徳美医師facebook2018年1月15日』より引用

 

 

肌のシミ、くすみは、1)細胞内のタンパク質が糖化したAGEsと、2)生体膜の脂肪酸か酸化された過酸化脂質。

 

 

肌にシミがあれば、全身の臓器(心臓、脳、肝臓、腎臓、その他)にもシミがあると言うことになる。

 

 

対策としては、1)高タンパク/低糖質食として糖化を防ぐこと、2)C、Eなどの抗酸化物質を摂取すること。

 

 

シミは大きく分けて2つ

 

 

  • 細胞内のタンパク質が糖化したAGEs

 

  • 生体膜の脂肪酸か酸化された過酸化脂質

 

 

 

 

消えた方のシミの方が消えやすかったということだと思います。そして、体にあった古い傷もこの1ヶ月ちょっとでかなり薄くなりました。

 

 

 

肌の新陳代謝が良くなったのは間違いありません。

 

 

 

 

CやEの摂取量を増やし、メガハイドレートにオメガ3と、全体的に「抗酸化」がアップするようなサプリの摂り方だったので、断定はできませんが、おそらく薄くなったシミは後者の「過酸化脂質」だと思います。

 

 

 

一方、消えていない方のシミはチャラになりにくい「糖化」によるシミの可能性があります。

 

 

 

体力とは関係ないですが、メガにしたことで、一応このような変化がありました。

 

 

 

これが旅行前の話です。

 

 

 

次は旅行中の状態についてお話します。

 

 

 

スポンサーリンク

 

 

 

旅行中の食事とサプリと体感

 

 

 

旅行中は糖質の代謝の為に、特に「ビタミンB50コンプレックス」を癌患者なみに飲みました。

 

 

 

下の左2つが「ビタミンB50コンプレックス」です。

 

 

 

 

 

 

今私が飲んでいるのは真ん中ので、これを1日6錠飲みました。

 

 

右のベンフォチアミン(脂溶性ビタミンB1)は、通常は1週間に1錠飲んでいるのですが、旅行前からは週2錠飲んでいました。

 

 

 

 

 

 

 

 

しかし、旅行中はバターとプロテインをちょっとサボりました。

 

 

 

 

バターを食べなかった理由は、糖質と脂質はなるべく組み合わせたくない…というのもありますが、正直言うとホテルで切って食べるのが面倒くさかったからです。

 

 

 

糖質制限をしている時に脂質が不足すると「エネルギー不足」になるので非常に危険ですが、旅行中は糖質を食べているので、糖質のエネルギーをあてにできるので(得られるATPは少ないですが)、脂質はなくてもいいかな…という判断もあります。

 

 

 

プロテインは持っていったので、最初に泊まったホテルでは飲みました。しかし、次に泊まったホテルでは飲みませんでした。

 

 

 

私はいつもプロテインを普通のマグカップに入れてスプーンで溶いて飲んでいます。

 

 

 

シェイカーは持っていますが、泡立つので使っていません。あの泡の喉越しが苦手なので、少々ダマになってもいいからスプーンで溶いて飲んでいます。

 

 

 

なので、粉だけをジップロックに入れて持って行きました。「コップやスプーンくらいホテルにあるだろう」…と思っていたわけです。

 

 

 

しかし、最初に泊まったホテルにはマグカップはありましたが、スプーンはありませんでした。シェイカーを持ってくればよかったと後悔。

 

 

仕方がないので、目の前にあったアメニティグッズの「新しい歯ブラシ」の柄で混ぜて飲みました。ちなみに、歯ブラシはいつも愛用しているものを持っていったので、アメニティグッズの歯ブラシはこの旅行では使いませんでした。

 

 

 

最初のホテルではなんとか飲んだのですが、次に泊まったホテルにあったのは小さい小さい湯飲みでした。

 

 

 

これは粉を入れて混ぜるのが難しいと判断しました。

 

 

 

しかも、ユニットバスだけで洗面台がなく、粉を溶いて飲むのに使い勝手が悪い構造でした。

 

 

ビジネスホテルなので文句は言えませんが、今度旅行する時はシェイカーを持っていくことにします。

 

 

 

しょうもない理由ですが、旅行中はほぼバターとプロテインを摂取しませんでした。

 

 

 

ほんの数日なのでダメージは小さいと思って油断していましたが、もしこれが1ヶ月とか長期ならこういうことはしません。

 

 

 

バター&プロテインほぼなしが原因なのかどうかわかりませんが、旅行3日目ぐらいからだるさというか、疲労を感じるようになりました。

 

 

 

寝ても疲れが若干取りきれていない感じもしました。

 

 

 

虚弱だった糖質制限をする以前のような疲労感ではありませんが、近年感じたことのない疲れです。

 

 

 

途中バターコーヒーを出すお店で、アイスのバターコーヒーを飲んだのですが、それでは回復しませんでした。でも味は美味しかったです。

 

 

 

 

また、旅行では乗り物に乗る事が多かったのに、とても足が疲れました。歩行量は明らかに歩き回っている普段の方が上です。

 

 

 

帰ってきてからしばらく痛かったので(筋肉痛とは違います)、回復力が落ちたのかなと思います。

 

 

 

でも、良い効果もありました。

 

 

 

 

この旅行では、ラーメン、カレー、天丼、ビュッフェ、ステーキ、おだんご、パン…色んなものをがっつり普通に食べました。

 

 

 

私は糖質を食べると吹き出物がでたり、目が痒くなったりするのですが、今回はそのような症状は起きませんでした。

 

 

 

バターやプロテインは摂っていなかったので、これはサプリメントのお陰でしょう。

 

 

 

スポンサーリンク

 

 

 

 

行事が終わった後

 

 

旅行の後で実家にも行き、そこでもしばらく糖質を食べる日々が続きましたが、今は普通の生活に戻っています。

 

 

 

体のだるさと、関節の可動が悪い感じがしますが、基本的に「糖質の害」は遅効性なので、現時点ではこの体験を起因とした、これといった大きなダメージはみられません。

 

 

 

1つ気になるのは、元の生活に戻してからも異常にお腹が空くことです。

 

 

 

旅行中に糖質を食べていた時から思っていたのですが、とにかく食べても食べてもすぐにお腹が空きます。

 

 

 

エネルギー不足なのかもしれないので、この空腹感が落ち着くまで、バターだけはしばらく増やしたままにしてみます。

 

 

 

それと、些細な事ですが、糖質制限に戻してから口の中がほとんど汚れなくなりました。

 

 

 

朝起きたばかりでも歯の表面にザラつきがなく歯を磨いたばかりのような綺麗さです。糖質を食べている時はこうはなりません。

 

 

 

 

食事制限と楽しみ

 

 

よく「糖質制限をすると食べる楽しみがなくなる」と相談されます。

 

 

 

いつも言っていますが、

 

 

 

  • ある程度体が丈夫になっている事

 

  • 不摂生の期間が非常に短い事

 

  • 糖質を代謝しきる栄養素を補っている事

 

  • リスクが0にはならないと理解している事

 

 

 

…といった条件が揃えば、一時的に健康を犠牲にして食事を普通に楽しむこともありだと思います。

 

 

 

糖質依存が抜けていて、切り替えができるなら比較的安全です。

 

 

 

 

食べる楽しみがなくなるのが嫌だから糖質制限をしたくない人は多いですが、このように考えるとハードルが下がるのではないでしょうか。

 

 

 

 

というわけで、私はこれから再び「健康を目的とした厳格な糖質制限」と、通常のサプリの種類と量に戻します。

 

 

 

 

スポンサーリンク

 

重度の花粉症の人も糖質制限や栄養療法で改善できる

この春で糖質制限を始めてからまる3年になりました。

 

 

 

糖質制限によって体質が改善して、様々な不調が改善しましたが、花粉症もその一つです。

 

 

 

これは、最初の年に治りました。

 

 

 

ちなみに、私の花粉症はスギではなく、9~10月頃のブタクサでした。これが半年も経たないうちに治ったのです。

 

 

 

その年だけではなく、翌年も、その翌年も全く花粉症にはなりませんでした。

 

 

 

完治です。

 

 

 

それまでも健康に気をつけていましたが、何をやっても改善しなかったので嬉しかったです。

 

 

 

でも「糖質制限で花粉症が治った」という話はわりとよく聞く話です。

 

 

 

完治する場合もあれば、症状が軽くなる場合もあります。それは、糖質をどれだけ制限したか・・・にもよるでしょう。

 

 

 

私は、1日の糖質量が10g以下なので、制限としては厳しい方です。これで完治しましたが、もし制限が緩かったらどうなっていたか分かりません。

 

 

 

 

 

 

こちらの記事では、「ブタクサの花粉症が治った」という話はしましたが、「何故、糖質制限をすると花粉症が改善するのか」・・・というメカニズムについては追求していませんでした。

 

 

 

なので今回は、花粉症を始めとしたアレルギーが何故糖質制限で治るのか、そして、花粉症を改善する為に必要な栄養の話をします。

 

 

 

スポンサーリンク

 

 

アレルギーは根本的な原因を取り除いて完治させることを目指すべきである

 

 

花粉を避けたり、症状を抑えたりする対策が人気です。

 

 

 

しかし、将来的な事を考えると、原因を枝葉の物質に求めてそれを叩くのではなく、本質を理解し改善するという発想が大事です。

 

 

 

 

「花粉症」等、なんらかのアレルギー症状がある人は、別のアレルギーにもなりやすいです。

 

 

 

それは、アレルギー物質は異なっても「アレルギー反応のメカニズム」は同じだからです。

 

 

 

「今は花粉症だけ」・・・という人も、アレルギーになる土壌が体の中に整っているわけですから、別のアレルギー予備軍と言えます。

 

 

 

つまり、不健康です。

 

 

 

その為、アレルギーが起こる本質的な問題を解決していくことが重要なのです。

 

 

 

 

目に見えない小さい異物を避けようとしたり、クスリで一つ一つを叩くより、効率もいいですし、無駄な時間やお金を使わなくて済みます。

 

 

 

それに、一生懸命異物を避けたところで、それは本当の原因ではありません。

 

 

 

花粉症の本当の原因は花粉ではない

 

 

花粉は「原因」ではなく「キッカケ」です。

 

 

花粉が原因だと過程した場合、辻褄の合わない事がでてきます。

 

 

まず、その事を表した話を紹介します。

 

 

 

『アレルギーの9割は腸で治る クスリに頼らない免疫力のつくり方 / 著者:藤田紘一郎』より引用

 

―スギ花粉は昔のほうが多かった!

 

 

スギをはじめヒノキ、ブタクサ等さまざまな植物の花粉がアレルゲンとなって、くしゃみや鼻水、目のかゆみなどを起こす花粉症は、どんどん低年齢化が進んでいます。

 

 

その背景には、大気汚染による免疫増強因子の増加や、都市化および住環境の変化、スギの植生・花粉飛散量の増加など、さまざまな因子が関与していると言われてきました。

 

 

でも本当にそうでしょうか。

 

 

大気汚染はフィルターなどの技術のない昔のほうがひどく、スギ花粉だって昔から飛んでいます。

 

 

その頃に花粉症になる人はほとんどいなかったのですから、これらの理由は少し説得力に欠けます。

 

 

私は回虫をはじめとする「寄生虫感染率が急減したこと」が大きな要因だと考えています。

 

 

私が子どものときは、みんなスギ花粉まみれでした。

 

 

スギ鉄砲といって、竹筒でスギの実をパチンと撃つ遊びのために、花粉でまっ黄色になりながらスギの実をたくさん拾い集めたものです。

 

 

女の子に「金髪にしてあげるよ」と言って、花粉を髪の毛いっぱい塗ってあげたこともあります。

 

 

女の子にモテたい一心で編み出した遊びですが、女の子にも非常に喜ばれました。

 

 

私たちの時代は、誰も彼もそんなふうにスギ花粉まみれでしたが、子供たちは誰も花粉症にはなりませんでした。

 

 

 

(49p~51p)

 

 

 

 

 

もし原因が花粉なら、昔の子供達の方が花粉症が多いはずですが、花粉症の歴史は浅く、日本で報告されたのは1961年だそうです。

 

 

 

 

ちなみに、ティッシュペーパーが開発されたのは第一次大戦中です。アメリカで一般向けに販売されたのは1924年、日本では1953年に発売が開始されています。

 

ティシュペーパーがない時代に花粉症があったら大変だったでしょうね…。

 

 

花粉が原因ではないとしたら、本当の原因は何なのか…

 

 

次はその事についてお話します。

 

 

 

 

花粉症の原因は栄養失調

 

 

 

糖質制限で花粉症が治ったという話をしましたが、治るには理由があります。

 

 

 

アレルギーを引き起こす物質である「抗原(花粉)」はキッカケ、花粉症を始めとしたアレルギーの本当の原因は「質的な栄養失調」です。

 

 

 

「質的な栄養失調」とは、以下のような状態を指します。

 

 

 

糖質過多・タンパク質不足・脂質不足・ビタミン不足・ミネラル不足

 

 

 

 

「栄養はバランスが大事」・・・と言って、「食事バランスガイド」をお手本に食べると必ずこうなります。

 

 

 

ほとんどの人が質的な栄養失調ですが、

 

 

中でも特にいけないのが糖質過多です。

 

 

 

「バランスの良い食事」では、穀物や野菜の摂取量が多めになります。

 

 

 

意識していない人も多いと思いますが、普通にご飯と和食のおかずを3食食べている人は、1日の糖質量が200g近くになります。

 

 

 

ちなみに糖質制限をする前の私は、230~260gの糖質を摂っていました(お菓子ばっかり、菓子パンばっかり…という暴飲暴食をしていたわけではありません。ご飯に野菜を中心としたバランスの良いメニューを食べていてこうなりました)。

 

 

 

しかし、1日に必要な糖質量はごくわずかです。200gはとんでもないです。

 

 

 

 

 

 

 

 

このような食生活は、動物食性動物である人間の体には負担が大きすぎます。

 

 

 

これだけ沢山の糖質を摂ったら、体の中で色々と問題が生じます。

 

 

 

スポンサーリンク

 

 

血糖値の仕組み

 

 

 

糖質はどのようにしてアレルギーの原因になるか説明していきます。

 

 

その為には「血糖値を調節する仕組み」を知らなくてはなりません。

 

 

 

血糖値は「血液中のブドウ糖の濃度」のことで、これを調節しているのが「上がった血糖値を下げるホルモン」と、「下がった血糖値を上げるホルモン」です。

 

 

 

  • 血糖値を下げるホルモン

 

  • 血糖値を上げるホルモン

 

 

 

 

血糖値を下げるホルモンは「インスリン」です。

 

 

「膵臓」の「ランゲルハンス島」の「β細胞」から分泌されます。

 

 

 

 

 

 

 

 

 

 

インスリンは、少量が常に分泌されています。これを「基礎分泌」と言います。

 

 

 

「基礎分泌」は、生命の維持に必要です。

 

 

 

そして、食事等で血糖値が上がった場合は、さらに追加で分泌されます。これを「追加分泌」と言います。

 

 

 

「追加分泌」は、多い程有害です。病気の原因になるので、「追加分泌」を出さないのが健康的です。

 

 

 

 

 

 

 

血糖値を下げるホルモンは、「インスリン」だけです。

 

 

 

一方、血糖値を上げるホルモンは数種類あります。以下が血糖値を上げるホルモンとそれが作られる場所です。

 

 

 

  • グルカゴン(膵臓のランゲルハンス島・a細胞)

 

  • 甲状腺ホルモン(甲状腺)

 

  • 成長ホルモン(脳下垂体)

 

  • アドレナリン(副腎髄質)

 

  • コルチゾール(副腎皮質)

 

 

 

人間以外の生物もこのように「血糖値を下げるホルモン:1」に対して「上げるホルモン:複数」です。

 

 

 

生物は血糖値を下げることは得意ではないということです。

 

 

 

 

『炭水化物が人類を滅ぼす【最終解答編】 植物vs.ヒトの全人類史 / 著者:夏井睦』より引用

 

 

 

生物の体は、多数のホルモンが生体機能を調節することで恒常性を維持しているが、特徴的なのは、拮抗ホルモンが必ず存在することだ。

 

 

タンパク質でいえば分解ホルモンと合成ホルモンの両方があり、またそれぞれに、1種類ではなく複数のホルモン群が機能している。

 

 

拮抗ホルモンが存在する理由は、一つの機能が暴走しないためのセーフティーネットであり、また、同じ機能のホルモンが複数存在する理由は、一つのホルモンに異常が起きても機能がストップしないためのバックアップシステムだ。

 

 

ところが、血糖調節(降下)に関連するホルモンだけが、この原則から外れていて、バックアップシステムが存在しないのだ。

 

 

血糖を上昇させるホルモンにはグルカゴン、コルチゾール、アドレナリン、甲状腺ホルモン、成長ホルモンの5種類が存在し、脳が血糖値低下を感知すると、副腎、膵臓、下垂体、甲状腺に働きかけ、副腎はアドレナリンとコルチゾールを、膵臓はグルカゴンを、下垂体は成長ホルモンを、そして甲状腺は甲状腺ホルモンを分泌し、血糖値をすばやく正常値に戻す。

 

 

つまり、5種類のホルモン分泌が全てストップでもしない限り、低血糖状態が続くことはない。

 

 

低血糖に対してはまさに鉄壁の備えである。

 

 

だが、高血糖に対する対策は超手薄だ。

 

 

何しろ、ホルモンは「インスリン」たった1つしかないのだ(これはヒトだけでなく他の生物でも同様)。

 

 

つまり、血糖降下機能に関してはバックアップシステムがなく、もしインスリン分泌に異常が起きたら、血糖値を下げる手段はないのである。

 

 

あなたが天地創造の神なら、こんな間抜けで脆弱な生物を創るだろうか。

 

 

これは前著でも書いたが、この血糖調節ホルモン数のアンバランスぶりをたとえていえば、アクセルが5つあるのにブレーキは1つしかない車みたいなものである。

 

 

このような車を運転する時、あなたはブレーキを踏みまくるだろうか?

 

 

しないはずだ。

 

 

1つしかないブレーキが壊れたら、車を止める手段がなくなるからだ。

 

 

ヒトやペットが容易に糖尿病になるのは、1つしかないブレーキを踏みまくっているからに他ならない。

 

 

それでは、血糖を下げるホルモンは1つしかなく、高血糖という危機的状況に対する備えがお粗末なのはなぜか。考えられうる理由は1つしかない。

 

自然界では血糖値が低下することはあっても、血糖が上昇することはありえない状況だからだ。

 

 

だから生命体は、起こりうる低血糖を予測して、鉄壁の「血糖上昇システム」を予め組み込んでおいたが、一方、血糖の上昇は絶対に起こらない現象なので、「血糖降下システム」は準備しなかったのだ。

 

 

沖縄の住宅に暖房設備がなく、アラスカの住宅にクーラーがないのと同じだ。

 

 

(65~67p)

 

 

 

1つのブレーキ(インスリン)に、

 

 

5つのアクセル(グルカゴン、甲状腺ホルモン、成長ホルモン、アドレナリン、コルチゾール)。

 

 

 

アレルギーは、このうちの「コルチゾール」が出なくなることが影響しています。

 

 

スポンサーリンク

 

 

血糖値を上げるコルチゾールとは

 

 

「コルチゾール」の別名は、「ヒドロコルチゾン」です。

 

 

 

このコルチゾールは、「副腎皮質 ふくじんひしつ」から分泌されます。

 

 

 

その場所ですが、まず腎臓があります。

 

 

 

 

 

で、その上にある小さいのが「副腎」です。

 

 

 

 

「副腎」は、ホルモンを分泌する器官の1つです。

 

 

 

 

 

 

「被膜」の中の構造は、外側の「副腎皮質 ふくじんひしつ」と、内側の「副腎髄質 ふくじんずいしつ」の2層になっています。

 

 

 

 

 

 

 

 

そして、外側の「副腎皮質」の構造は層です。

 

 

外側から「球状層 きゅうじょうそう」「束状層 そくじょうそう」「網状層 もうじょうそう」と言います。

 

 

 

 

 

コルチゾールは、「束状層」から分泌されます。

 

 

ちなみに、血糖値を上げるホルモンである「アドレナリン」は「髄質」から分泌されます。

 

 

 

 

 

そして、コルチゾールの働きを一部紹介します。

 

 

 

  • 糖新生(糖質以外の物質からブドウ糖を合成する)

 

  • タンパク質代謝

 

  • 脂質代謝

 

  • 抗炎症作用

 

  • 神経系に作用する

 

 

 

 

このうちの「抗炎症作用」に注目して下さい。

 

 

 

糖質が原因でアレルギーになる

 

 

 

糖質を摂取すると血糖値が上がります。

 

 

まず上がりすぎた血糖値を下げるために「インスリン」が分泌されます。

 

 

 

インスリンが出て血糖値が下がるのはいいですが、下がりすぎた血糖値を上げなければいけないので(下がりすぎの方が危険)、その為のホルモンが分泌されます。

 

 

 

当然、「コルチゾール」も分泌されます。

 

 

 

 

上がった血糖値を下げるために、過剰にインスリンが分泌されると「膵臓」が疲弊することはよく知られています。

 

 

同じように、下がった血糖値を上げる為に、過剰にコルチゾールが分泌されると「副腎」も疲弊します。

 

 

 

日常的に糖質を摂取する人はこれの繰り返しです。主食を食べる人は1日3回です。

 

 

 

その結果、「コルチゾール」が出なくなります。

 

 

 

 

「コルチゾール」には抗炎症作用があるので、これが出なくなるとアレルギー物質に対応できなくなります。

 

 

 

対策は、糖質を制限して副腎を疲れさせない事です。

 

 

 

スポンサーリンク

 

 

副腎の疲労と免疫システムの関係

 

 

 

副腎が疲労するのは、糖質だけではなくストレスも関係しています。

 

 

副腎が疲労した場合、免疫システムに与える影響が以下の記事に分かりやすく書かれています。

 

 

 

『病気の治療所 副腎疲労症候群とアレルギー疾患の関係』より引用

 

 

 

アレルギー症状がある人は副腎が弱い

 

 

上記のことをもう少し詳しく述べていきます。

 

 

アレルギー症状がおこるメカニズムは、脳が大きく関与しています。体に異物が侵入してきたと判断した際に、脳は、「ヒスタミンなど異物に攻撃を仕掛ける物質」を放出するように命令します。

 

 

特に、過去に病気になったり、過度のストレスを受けたりした人は、副腎が弱り体内が臆病になっているため、体を異物から守るためにヒスタミンなどの物質が過剰に放出されます。

 

 

ヒスタミンなどが放出されると、異物を処理する際に炎症反応がでます。このことを一般的にアレルギー症状といいます。

 

 

ここでヒスタミンについて簡単に説明します。

 

 

①動物の細胞内に広く存在する化学物質である

 

 

②普段は細胞内でおとなしくしているが、アレルゲンや長期にわたる薬の服用により活性化する

 

 

③血管を拡張させ、アレルゲンに対応する白血球などを患部に集めやすくする

 

 

④ヒスタミンの作用により、白血球はアレルゲンを攻撃することで炎症症状がでる

 

 

このように、異物が体内に入ってきた際に、脳の命令により放出される物質がヒスタミンです。

 

 

ただヒスタミンが過剰に活性化されるとアレルギー症状の原因となります。

 

 

 

副腎疲労がさらに副腎を疲弊さす

 

 

アレルギー症状がでる原因の1つに、ヒスタミンが関係することはお伝えしました。

 

 

そのヒスタミンの放出量は、副腎の疲弊の度合いと関係します。

 

 

副腎が疲弊していると体は臆病になるため、必要以上のヒスタミンを放出し、アレルゲンから体を守ろうとします。

 

 

しかし、ヒスタミンが多く放出されると炎症反応が強くでます。

 

 

そこで、ヒスタミンの放出量を調整しているのが、副腎が造るコルチゾールです。

 

 

皮肉にも副腎が弱るとヒスタミンが多く放出され、またそのヒスタミンの量を調節するために副腎がコルチゾールを造らねばならず、副腎は更に疲弊してしまいます。

 

 

そして、このような状態が続くと副腎が造るコルチゾールの濃度・質が低下してしまい、ヒスタミンの分泌量をコントロールできなくなります。

 

 

そして、ヒスタミンが過剰に放出されてしまい、アレルギー症状を抑えられなくなります。

 

 

 

 

以下は、副腎と「自己免疫疾患」の関係についてですが、「アレルギー」と同じように免疫システムの異常で起こる疾患なので、アレルギーと共通する部分もあります。

 

 

 

『病気の治療所 副腎疲労症候群と自己免疫疾患の関係』より引用

 

 

副腎が造るコルチゾールの濃度・質が低下すると、白血球に属するリンパ球やナチュラルキラー(NK)、またはマクロファージなどの異物と戦う物質の働きをコントロールできなくなります。

 

 

その結果、免疫が過剰になったり低下したりします。

 

 

免疫のコントロールができなくなることから、慢性の炎症症状が続いたり自己免疫疾になったりすることがあります。

 

 

ここでは、副腎疲労症候群と自己免疫疾患について述べていきますが、その前に副腎疲労症候群と「慢性の炎症体質」の関係を先にお読みください。

 

 

悪さをしない細菌・ウイルスも攻撃してしまう

 

 

副腎が健康であれば、白血球は体に宿っている細菌・ウイルスに対し一定の許容量を設定しています。

 

 

例えば「ある細菌が5000匹に増えたら攻撃しよう」とか「あるウイルスが30000匹に増えたら攻撃しよう」など、設定以上に細菌・ウイルスが増えないか監視をして、数を安定化させる働きをしています。

 

 

しかし、副腎疲労症候群になると、白血球の働きをコントロールすることが難しくなります。その結果、体を守ろうという働きが強まり、細菌・ウイルスに対して過剰な攻撃を仕掛けてしまいます。

 

 

上記したように、「ある細菌が5000匹になったら攻撃しよう」という設定が狂いだし、例えば細菌が2500匹という少ない数にもかかわらず攻撃を開始します。

 

 

また、腸内細菌など体内のいたる場所に常在している細菌・ウイルスは、通常は体に対して炎症を引き起こすような悪さをしません。

 

 

しかし、副腎が弱って白血球のコントロールが乱れると、その常在菌に対しても攻撃を仕掛けてしまいます。

 

 

 

その証拠に、最近特に増えている自己免疫疾患に潰瘍性大腸炎があります。

 

 

この症状は過剰になった白血球が腸内に宿っている細菌・ウイルスを攻撃してしまうことで発症します。

 

 

(中略)

 

 

最近、自己免疫疾患が急増しています

 

 

私は長い間、副腎疲労症候群を診てきましたが、最近特に多い症状が潰瘍性大腸炎です。その他にも、原因不明の関節炎や線維筋痛症(せんいきんつうしょう)があります。

 

 

潰瘍性大腸炎では、大腸に常在する腸内細菌を白血球が敵と勘違いして、攻撃を仕掛けてしまいます。

 

 

そのことにより、正常な腸壁の細胞に傷がつき、出血を伴います。人の体の免疫を担う白血球の約70%は、腸に存在しているといわれています。

 

 

「腸管免疫説」を唱えている方々は、「免疫の中心は腸である。腸をきれいに! 腸内細菌がすべてである!」など、腸の大切さを訴えています。

 

 

しかし、免疫(白血球)70%が存在している腸になぜ、クローン病や潰瘍性大腸炎の病気が発症するのでしょうか?

 

 

免疫が強いなら、そのような病気には罹らないはずです。

 

 

しかし、上記したように、クローン病や潰瘍性大腸炎は増加の一途です。

 

 

なぜ、そうなるのかというと、免疫が強すぎ、過剰になっているからです。

 

 

 

しかし、そのことが分からず、世間では「免疫力を上げるサプリメント」や「免疫力を上がる食事法」など、免疫を上げましょう! の大合唱です。

 

 

免疫は下がり過ぎても上がり過ぎても健康は維持できません。

 

 

ちなみに、「腸管免疫説」を唱える人達は、「腸に悪いから動物性食品を控えろ」と言ったり、反対に、食物繊維が多いから野菜を食べるようにすすめてきます。

 

 

しかし、現在の野菜は品種改良されて糖度が高くなっています。

 

 

食物繊維を目的に野菜をバクバク食べると、確実に高血糖になってインスリン、コルチゾール等が大量に分泌されます。

 

 

元、野菜をたくさん食べていて糖質過多の症状があちこちに出ていたので断言します。

 

 

野菜には糖質が含まれているので、油断して食べると糖質の悪影響を受けます。

 

 

私はスーパー糖質制限で花粉症が治りましたが、それまではバランスの良い食事でした。内容は野菜多めに、肉よりも魚介類や甲殻類が多かったです。

 

 

食品添加物や遺伝子組み換え食品を避けたりしていたのですが、それでも花粉症が楽になったことはありませんでした。

 

 

 

野菜を食べていてもこれです。

 

 

糖質過多による副腎の疲弊から免疫システムはおかしくなります。

 

 

 

スポンサーリンク

 

 

 

花粉症対策はサプリメント

 

 

私は糖質制限だけで花粉症が完治したので問題はないのですが、世の中には糖質を制限できない人もいます。

 

 

 

ここからは、そんな人達がどうやったら花粉症の症状が楽になるかについて話をします。

 

 

方法は不足している栄養素をサプリで補う事です。

 

 

ただ、これは私が試していないので理論中心です。

 

 

花粉症の改善に有効的だと思われる栄養素がこちらです。

 

 

 

 

  • タンパク質

 

  • ビタミンD

 

  • ビタミンA

 

  • 亜鉛

 

 

 

理由を順番に説明していきます。

 

 

 

タンパク質

 

 

タンパク質は体の材料なので、これが少ないと、どんな健康法も効果が落ちます。

 

臓器だけでなく、「免疫細胞」もタンパク質でできています。

 

そして、化学反応を進める「酵素」もタンパク質です。

 

 

ビタミンやミネラルを摂取する前に、タンパク質をしっかり摂っている事が前提です。

 

 

 

ビタミンD

 

 

免疫システムに不可欠でアレルギーが劇的に改善する…と言われているのがこのビタミンDです。

 

 

ビタミンDには、免疫の過剰反応を抑える働きがあります。

 

 

最近、「ビタミンDのサプリメントで花粉症が治った」という話をネットや本等で見聞きする事が増えました。

 

 

私も花粉症があったら試してみたいですが、既に完治してしまったので試せません。

 

 

ビタミンDは、日光を浴びて自分の体で合成することができますし、食事からも摂取することができます。

 

 

しかし、疾患に効果がある程の量を毎日補うとなると大変です。なので、サプリメントからの摂取が圧倒的に効率が良いです。

 

 

 

成人男性は、1日に3000IU~5000IUのビタミンDを消費するそうです。

 

 

 

「IU アイユー」とは脂溶性のビタミンに用いられる単位です。現在は「μg マイクログラム」が使われています。

 

1μg = 40IU

 

 

 

 

以下のような注意点もあります。

 

 

『サーファーに花粉症はいない / 著者:斉藤糧三』より引用

 

 

ただし、次の3つの病態については、ビタミンD補充を注意すべきです。

 

 

・サルコイドーシスなどの肉芽腫性疾患(石灰化を助長するおそれあり慎重投与)

 

 

・リンパ腫、ライム病、腎臓病など高カルシウム血症をきたす疾病(血中カルシウム濃度の増大のおそれあり)

 

 

・ヒドロクロロチアジド(利尿剤)服用時(血中カルシウム濃度の増大のおそれあり)

 

 

(122~123p)

 

 

 

 

ビタミンA

 

 

「ビタミンD」を摂取する場合は、「ビタミンA」を意識して摂取すると良いです。

 

 

同時に使う事で効果が高まるからです。

 

 

 

『花粉症は1週間で治る! / 著者:溝口徹』より引用

 

 

ビタミンAはビタミンDの受容体に結合することが知られ、以前はビタミンDの作用を減弱させるのではないかと考えられていましたが、実際にはビタミンDとビタミンAを同時に使う事によって互いの効果を高め合うことがわかりました。

 

 

 

 

ビタミンAはビタミンDの受容体に結合…については以下に詳しく書いてあります。

 

 

 

 

『サーファーに花粉症はいない / 著者:斉藤糧三』より引用

 

ビタミンDは通常、脂肪や肝臓に備蓄され、血液中に放出されるのですが、充足していない場合、ビタミンD摂取後6時間くらいで血中濃度が下がってしまいます。

 

 

そのため、飲み始めは1回に4000IU摂取しても、数時間で鼻づまりが戻ってくるのでした。

 

 

「1日1万IU以下の摂取で異常があった報告はない」とあったので、1日2回4000IUずつ摂取しました。

 

 

1週間、2週間するうちにだんだん、“切れてきた”(血中濃度が低下した)時の症状が軽くなっていったのでした。

 

 

3週間くらいで、波がなくなったので、1日1回4000IUに減量しました。

 

 

ちょうどそのくらいの時期に、夜間、雨の自動車運転時に、車線などがとても見えにくくなることを自覚しました。

 

 

また、とても目が乾くという症状が現われました。

 

 

私は栄養療法を専門にしていたので、ビタミンA欠乏症による夜盲症と眼球乾燥症状とわかりました。

 

 

しかし、私はビタミンAはサプリメントから1日5000IU日常的に摂取していたので、欠乏ではなくて、ビタミンAとビタミンDの細胞が核の受容体を共有していることによる、相対的な欠乏と理解しました(これに関しては、充分に解明されておらず、現時点ではあくまで仮説です/124ページ「コラム7」参照)。

 

 

(19~21p)

 

 

ちなみに、そのコラムがこちら。

 

 

ビタミンD摂取時の相対的ビタミンA欠乏にご注意!

 

 

プロローグで私自信の経験としても述べましたが、ビタミンDのサプリメントを摂取すると、相対的なビタミンA欠乏症、具体的には夜に目が見えにくくなる夜盲症や、眼球結膜の乾燥(ドライアイ)の症状が出ることがあります。

 

 

ビタミンA欠乏の症状として、夜盲症は有名ですが、ドライアイはあまり知られていません。

 

 

ビタミンAは、皮膚や目の角膜などのターンオーバー(新陳代謝)に必須のビタミンで、欠乏すると上皮の機能低下が起こります。

 

 

目の場合は、眼球の乾燥感として自覚されます。

 

 

その他、ビタミンA欠乏で起こる身近な病気といえば、ニキビです。ニキビの中でも、いわゆる「白ニキビ」。ちゃんとした皮脂腺が形成されない。角質のターンオーバーが適切でない。これらが重なって皮脂腺がつまることで起こるニキビ。

 

 

その原因もビタミンA欠乏です。

 

 

また、目の中の遇角で房水の通りが悪くなることで、眼圧が上がるのが緑内障ですが、ビタミンA欠乏による遇角機能の異常を指摘する医師もいます。

 

 

 

ところで、ビタミンAはニンジンなどに含まれるβカロテンから体内で合成できることになっているので、一般的には欠乏は起きないことになっています。

 

 

しかし実際は、βカロテンからビタミンAの合成がうまくできない体質の方がいることがわかっています。

 

 

またビタミンAを豊富に含有している食品は、レバーやウナギなど、あまり日常的に摂取されない食材なので、実はふだんの生活で気付かないうちにビタミンA欠乏になっていることは少なくありません。

 

 

しかし、この認識は一般的ではないので、市販のサプリメントにもβカロテンは入っているけれど、ビタミンAは入っていないことが、ほとんどです。

 

 

 

当時、私は自分の設計したサプリメントを摂っていて、1日5000IUのビタミンAを摂取していました。

 

 

ビタミンA欠乏になるはずはないので「なんで目が乾くのだろう?」と不思議に思いました。

 

 

ビタミンDの副作用を調べても、夜盲症やドライアイについては触れられていません。

 

 

実は脂溶性ビタミンであるビタミンAとビタミンDは、核内受容体といって、どちらも細胞の核の部分に直接届いて仕事をするスーパーファミリーと呼ばれていて、そのメッセージを受け取るところが共通です。

 

 

つまり、受容体(レセプター)が共通なのです。

 

 

その結果、ビタミンDが受容された分、ビタミンAがレセプターに受容してもらう機会が減って、相対的なビタミンA欠乏が起きてしまったのです。

 

 

受容体をコンビニのレジにたとえると、レジが1つのコンビニにビタミンDさんが列を作ってしまい、ビタミンAさんの会計が先送りされてしまったわけです。

 

 

ビタミンDサプリメントを摂取した場合、経験的にこの相対的ビタミンA欠乏症は1ヶ月ほどで緩和され、落ち着いていきます。

 

 

(124~125p)

 

 

 

 

亜鉛

 

 

亜鉛は免疫の働きを高めます。

 

 

 

  • 免疫システムの主役である「白血球」を増殖する

 

  • ビタミンAの利用効率を高め粘膜を丈夫にする

 

  • 体内の炎症を抑制する働きがある

 

 

 

 

免疫システムにとって必要な亜鉛ですが、精子の生成に消費されるので、男性は不足しやすい栄養素です。

 

 

 

スポンサーリンク

 

 

 

一般的な花粉症対策のリスク

 

 

最後に薬で症状を抑える事のリスクについて触れておきます。

 

 

 

私は「ビタミンやミネラルはサプリメントで摂った方が良い」という話をよくするのですが、こう言うと、栄養は食事から摂るのが良いとか、副作用が心配…といった声がかえってきます。

 

 

 

でも多くの人が使っている薬の方がリスクがあります。

 

 

 

 

 

『病気の治療所 副腎疲労症候群と自己免疫疾患の関係』より引用

 

 

一般的に病院で処方される薬は、過剰になっている免疫(白血球)にアプローチするものです。

 

 

その薬の1つに、白血球の働きを抑え込むように作られたものがあります。いわゆるステロイド系のものです。ステロイド系の薬の特徴をまとめます

 

 

①感覚器官を麻痺させ、臓器・器官にはびこった異物の存在を脳に知らせない

 

②白血球の働きを抑制することにより、異物への攻撃を妨げる

 

③血管を異常収縮させ、ヒスタミンの放出を抑える

 

 

 

上記の作用で、ステロイド系の薬を使うと見事に炎症がおさまります。しかし、臓器・器官にはびこった細菌・ウイルス、または体外から侵入してきた化学物質などに作用しているものではありません。

 

 

 

攻撃側に停戦命令をだしているだけです。

 

 

 

しかし、ステロイド系の薬には副作用があるため、長期服用することに抵抗があります。

 

 

そこで、ある程度炎症症状が治まると薬の服用を中止します。

 

 

ここで、ステロイド系の薬の服用を中止した場合に、体内ではどのような現象が起こるのかをまとめてみます。

 

 

①薬を服用中は白血球の働きが抑制されていたが、服用を中止すると白血球の働きが過剰になる

 

②過剰なった白血球は、体内に増殖した細菌・ウイルスを以前にまして攻撃することにより、炎症症状がおこる

 

 

 

ステロイド系の薬は一種の麻薬です。

 

 

安易に使うと、その薬を止めるのにとても苦労をします。

 

 

しかし、現代医学では、軽い咳や花粉症、または軽い皮膚炎であっても簡単にステロイド系の薬を処方します。

 

 

その背景には「炎症を止めてほしい患者」と「炎症を止めないと悪評を言われるのを嫌がる医師」と双方の思惑があります。

 

 

 

「急性のネフローゼ」や「ヘルペスが眼内にはびこって失明の恐れがある」などの場合に、ステロイド系の薬を使うことには異論はありません。しかし、そのような病気になる背景の説明がないことに私は疑問を感じます。

 

 

 

花粉症の対策は、糖質を制限したり、サプリを使った方が効率よく安全だと思います。

 

 

 

もう1つ言っておくと、糖質によって血糖値が上がり「インスリン」が分泌された後、下がりすぎた血糖値を上げる為に「コルチゾール」などが分泌されます。

 

 

これらのホルモンに必要な主な材料は「アミノ酸」、補酵素の「ビタミンB群」、「亜鉛」、「マグネシウム」等です。

 

 

 

糖質を過剰に摂取すると、これらが減るので、たくさん合成しなければなりません。

 

 

 

そのたびに材料のタンパク質、ビタミン、ミネラルが消費される、不足するというわけです。

 

 

 

スポンサーリンク

 

アレルギーと抗体について分かりやすく説明してみた

 

 

虚弱体質とか、大病をしたことがない人でもなる身近な疾患があります。

 

 

 

「花粉症」や「アトピー性皮膚炎」等のアレルギーです。

 

 

 

なんと、日本人の3人に1人が何らかのアレルギーだそうです。

 

 

 

たかがアレルギー…と軽く考える方もおられるかもしれませんが、これは免疫システムの異常なので立派な病気です。

 

 

 

何故、近年こんなにアレルギーの人が増えてきたのかその理由を知るためには、アレルギーがどんなものなのか知っておく必要があります。

 

 

 

 

スポンサーリンク

 

アレルギーは免疫システムの異常

 

 

 

体には「免疫 めんえき」と言う仕組みが備わっています。「免疫」とはシステムの事で、イメージは防衛軍です。

 

 

 

「免疫」は、体に外敵(異物)が入って来たときに、それを「自分ではない異物だ」と認識してから攻撃をして体を守ります。

 

 

 

  • 外敵と自分の組織を正しく区別する

 

  • 外敵を攻撃して守る

 

 

 

免疫の仕組みについては、以下の記事で述べました。

 

白血球と免疫の仕組みについて分かりやすく説明してみた

 

 

 

 

そして、外敵を攻撃すると「炎症」と言われる反応が起きます。

 

 

 

「免疫」と「炎症」の違いは、「防衛軍」と「国を守る本土決戦による戦火」です。

 

 

 

 

免疫・・・防衛軍(守るシステム、能力)

 

炎症・・・戦火、戦闘(状態、反応)

 

 

 

 

炎症のパターンはこちらです。

 

 

 

  • 赤くなる

 

  • 腫れる

 

  • 熱くなる

 

  • 痛い

 

  • 動かせない等

 

 

 

 

このシステムが正常に働いていれば、体にとって頼もしい存在です。

 

 

 

しかし、この防衛軍が何らかの理由でおかしくなってしまうことがあります。そうなったら頼もしい防衛軍が自国にダメージを与えてしまうのです。

 

 

 

 

そして、免疫システムがおかしくなるパターンには「自己免疫疾患 じこめんえきしっかん」と、「アレルギー」があります。

 

 

 

この2つは違います。

 

 

 

「自己免疫疾患」は、「自己」と「非自己」の認識がうまくできなくなって、自己を構成する物質を「外敵(抗原)」と勘違いして攻撃をしてしまう疾患です。

 

 

免疫が「これは異物だな(自分じゃないな)」と判断して、敵として攻撃するので、体はダメージを受けます。

 

 

 

「慢性関節リウマチ」や、「膠原病」等です。

 

 

 

 

「膠原病 こうげんびょう」の話をすると、「高い所でなるやつ?」と聞かれることが多いです。それは、「高山病 こうざんびょう」です。

 

「膠原」とはコラーゲンのことです。そして、膠原病とは全身に炎症が起こる病気で、世間では、難病ということになっています。本当は糖質の過剰摂取が主な原因なのですが、それを無視しているので、原因は分かっていない…とされています。

 

 

以下の記事に膠原病について書いています。

 

 

炎症と自己免疫疾患について分かりやすく説明してみた

 

 

 

以上が「自己免疫疾患」です。

 

 

 

「アレルギー」は、「自己」と「非自己」の認識には問題がありません。攻撃対象は「自己」ではなく、外敵です。

 

 

 

ただし、外敵に対して過剰に反応します。それによって、体に不都合が起こるのです。

 

 

 

 

「気管支ぜんそく」、「アトピー性皮膚炎」、「花粉症」等です。

 

 

 

 

以下が「アレルギー」と「自己免疫疾患」の違いです。

 

 

 

  • 自己免疫疾患・・・自己と非自己の認識が狂う、自己を攻撃

 

  • アレルギー・・・・・・・自己と非自己の認識は正常、外敵を過剰に攻撃

 

 

 

 

本記事のテーマは「アレルギー」ですので、後者についての話になります。

 

 

 

スポンサーリンク

 

 

 

アレルギーに関わる細胞

 

 

アレルギーのメカニズムについてお話する前に、関係する細胞を紹介します。

 

 

 

 

 

 

マクロファージ

 

 

「マクロファージ」は、白血球の「単球」が成長した姿の1つです。

 

 

 

 

 

「マクロファージ」は、外敵を見つけると、食べることで処理します。これを「貪食 どんしょく」とか「食作用」と言います。

 

 

さらに、取り込んだ敵の情報を「ヘルパーT細胞」に伝える役目も果たします。

 

 

 

 

樹状細胞

 

 

白血球の「単球」から成長したのが「樹状細胞 じゅじょうさいぼう」です。

 

 

 

 

外敵を取り込んで、その情報を「ヘルパーT細胞」に伝えます。マクロファージと似ていますが、情報を伝達する能力はこの樹状細胞の方が優れています。

 

 

なので情報屋です。

 

 

 

顆粒球

 

 

「顆粒球」は顕微鏡で見ると、多くの顆粒があります。

 

貪食能力を持っていて、3タイプあります。

 

 

 

 

 

 

 

肥満(マスト)細胞

 

紛らわしいことに、太いからこの名前がついているのですが、「肥満」とは全く関係ない細胞です。

 

 

ではどんな細胞なのかというと、大きな特徴がこちらです。

 

 

 

 

細胞の表面には「IgE」という「抗体」の定常部と結合する「受容体(レセプター)」がたくさんあります(※「IgE」、「抗体」については後で詳しく説明します)

 

 

 

 

「受容体」とは、何らかの刺激を受け取る「受信機」みたいなものです。

 

 

 

 

そして、肥満細胞の中には「化学物質を含んだ顆粒」がたくさん入っています。異物を見つけると、顆粒中の化学物質を放出して排除しようとします。

 

 

 

ちなみに肥満細胞が放出する物質はこちらです。

 

 

 

『慢性膀胱炎・間質性膀胱炎・膀胱頚部硬化症 マスト細胞(肥満細胞)の存在意義』より引用

 

 

1.ヒスタミン

 

アレルギー反応に関与する代表的刺激成分。血管透過性を高め、いろいろな血液中の成分を漏れ出させる作用があります。風邪薬にはヒスタミンの作用を抑える抗ヒスタミン剤が一般的に含まれています。また膀胱などの内臓の平滑筋を収縮させる作用もあります。

 

 

2.ヘパリン

 

血液をサラサラにする成分。赤血球・白血球やリンパ球が血小板の作用で固まらないようにしています。血液透析の際に、血液が固まらないように回路の中に注入される薬剤として有名。

 

 

3.プロスタグランディン

 

炎症物質としては有名な成分。血管拡張作用と赤血球柔軟作用があります。消炎鎮痛剤は、この成分を抑制する働きで、痛みを抑えます。消炎鎮痛剤で急性胃炎や胃潰瘍の副作用が有名ですが、プロスタグランディンの働きを抑えることで毛細血管の流れを悪くして胃粘膜細胞の血液栄養供給が低下するからです。

 

 

4.サイトカイン

 

アレルギー反応や免疫システムに関与する様々な細胞(リンパ球)の働きの強さと期間を調節し、情報交換を媒介するための成分です。物質的には、ホルモン様低分子タンパク質です。

 

IL(インターロイキン)-3:造血前駆細胞の促進

 

IL-4:B細胞の活性化

 

IL-5:B細胞の分化増殖、好酸球の分化増殖

 

IL-6:B細胞の分化増殖、発熱

 

IL-10:マクロファージ活性の抑制

 

IL-13:B細胞の分化増殖

 

I-309:好中球・マクロファージ・血管平滑筋細胞の遊走と活性化

 

GM-CSF(マクロファージコロニー刺激因子)

 

TNF-α(腫瘍壊死因子):好中球遊走、細胞接着因子活性化

 

 

 

5.ケモカイン

 

白血球やリンパ球の遊走を促す作用のある成分がケモカインと呼ばれ、サイトカインに分類される場合もあります。

 

CXCL-8(旧名IL-8):好中球遊走・活性化

 

 

 

 

 

この肥満細胞の他の特徴が以下です。

 

 

  • 造血幹細胞由来の血球系細胞

 

 

  • マクロファージや樹状細胞のように血管の周りや、粘膜など、いろんな組織に存在している。

 

 

  • 「蕁麻疹」はこのマスト細胞の活性化が原因

 

 

 

ナチュラルキラー(NK)細胞

 

 

 

 

体をパトロールして、敵を発見したら、自分の判断で攻撃します。

 

 

 

T細胞

 

免疫システムの特殊部隊で、知的な働きをします。

 

「T細胞」は数種類あって、それぞれ役割が違います。

 

 

 

 

 

  • 免疫の司令官・・・ヘルパーT細胞

 

  • 免疫のスナイパー・・・キラーT細胞

 

  • 免疫のストッパー・・・サプレッサーT細胞

 

 

 

ちなみに、「ヘルパーT細胞」も何種類かあります。

 

 

 

 

B細胞

 

 

 

 

 

「B細胞」は、特定の敵に効く「抗体 こうたい」というミサイルを作る工兵です。

 

 

これを「T細胞」の指令で製造します。

 

 

ここからは、このB細胞が作る「抗体」について説明します。これがアレルギーに関わっているからです。

 

 

 

スポンサーリンク

 

 

 

抗体を産生するB細胞とは

 

 

抗体は、「B細胞」が分化してできた「形質細胞」が造ります。

 

 

 

 

 

 

「B細胞」について簡単に説明します。

 

 

 

 

血液は、液体である「血しょう」と、「赤血球」、「白血球」、「血小板」にわけられます。

 

 

 

 

 

「白血球」の一種が「リンパ球」です。

 

 

 

 

 

 

で、リンパ球の一種が「B細胞」です。

 

 

 

 

 

 

 

「B細胞」は、「ヘルパーT細胞」の指令を受けて、「抗体」を使って、異物を捕獲して攻撃します。

 

 

 

 

作られた「抗体」は、対になる外敵とくっつきます。そして外敵を沈殿・凝縮させるのです。

 

 

 

 

このように、抗体と敵(抗原)が結合すると、それが目印となって、マクロファージが強力に食べようとします。このように食細胞の食欲を促す働きを「オプソニン化」と言います。

 

 

 

 

というわけなので、武器とはいっても、「抗体」が直接敵を破壊(分解)するわけではありません。

 

 

 

 

 

「抗体」は、水に溶けやすいタンパク質で、血液中や体液中に存在しています。

 

 

 

なので、これを「体液性免疫 たいえきせいめんえき」と言います。

 

 

 

これに対して、「キラーT細胞」は、「抗体」を使わず細胞が直接異物を攻撃します。これを「細胞性免疫 さいぼうせいめんえき」と言います。

 

 

 

  • B細胞・・・抗体を使用=体液性免疫

 

  • キラーT細胞・・・細胞が直接攻撃=細胞性免疫

 

 

 

前者は武器を使った攻撃、後者は武器を使わない攻撃のイメージです。

 

 

 

ちなみに、「B細胞」の「B」とは、骨髄(Bone Marrow)で分化する・・・という意味です。一方、「T細胞」の「T」は、胸腺(Thymus)です。

 

 

次に「抗体」について解説します。

 

 

 

抗体の構造

 

 

 

外敵や自己の成分ではない物質のことを「抗原 こうげん(アレルゲン)」と言います。

 

 

 

「抗原」には、細菌、ウイルス、カビ、そして、本来体に害がない物質である花粉、食品…等があります。

 

 

 

外敵、非自己 = 抗原

 

 

 

そして、体に抗原が入ってきた時に、対抗して体を守ろうとする物質のことを「抗体 こうたい 」と言います。

 

 

 

 

 

 

 

 

 

別名は「免疫グロブリン immunoglobulin(イムノ グロブリン)」で、「Ig(アイジー)」と略されます。

 

 

 

 

抗体 = 免疫グロブリン = Ig

 

 

 

「抗体」は、リンパ球の一種「B細胞」が造る「誘導ミサイル」です。

 

 

 

侵入してきた「抗原」のタンパク質の立体構造を原形にして作られます。

 

 

 

 

この抗体(免疫グロブリン)はつの部品でできています。ここでは、「IgG」という抗体を例にします。

 

 

 

 

 

 

 

 

「H鎖」と呼ばれる長いペプチド鎖と、「L鎖」と呼ばれる短いペプチド鎖が2本ずつです。

 

 

全体は「Y」の形をしています。

 

 

抗体は、「糖タンパク分子」です。

 

 

 

  • H鎖 Heavy Chain 重鎖)

 

  • L鎖 Light Chain 軽鎖)

 

 

また、上の部分は「可変部 かへんぶ」、下の部分を「定常部 ていじょうぶ」と呼びます。

 

 

 

 

 

 

抗原と結合するのは「可変部」です。

 

 

 

 

 

「可変部」は、抗体ごとにアミノ酸配列が異なります。

 

 

 

この部分は多様性があります。「抗原」の形とかみ合うような構造で、鍵と鍵穴の関係に例えられます。

 

 

 

従って、1つの抗体が、形の合わない抗原と結合することはありません。

 

 

 

 

 

 

この仕組みのおかげで、誘導ミサイルのように「狙った抗原」をピンポイントで攻撃できるのです。これを「抗原抗体反応」と言います。

 

 

 

 

そして、「抗体」の下の「定常部」は、「食細胞」や「肥満細胞」に結合する部分です。

 

 

 

スポンサーリンク

 

 

 

抗体の働きと種類

 

 

 

「抗体」の働きはこちらです。

 

 

 

  • オプソニン化・・・抗原にくっついて、食細胞の食欲を促す

 

  • 抗原の中和(無毒化)・・・抗原の周りを取り囲んで、毒素を中和する

 

  • 補体を活性化して細菌の細胞膜を破壊する

 

  • 炎症

 

 

 

 

抗体の「可変部」はオーダーメイドなので、「ペアになる抗原」ごとにバラバラです。

 

 

そして、このような違いとは別に、抗体(Ig)には種類があります。

 

 

人間の抗体は種類です。

 

 

 

  • IgM(アイジー・エム)

 

  • IgA(アイジー・エー)

 

  • IgG(アイジー・ジー)

 

  • IgD(アイジー・ディー)

 

  • IgE(アイジー・イー)

 

 

 

抗原が体内に侵入した場合、最初に「IgM」が作られて対応します。

 

 

粘膜では「IgA」が、粘膜以外の部分では「IgG」が戦います。この2つがメインとなって抗原の中和(無毒化)を担当します。

 

 

「IgD」は、B細胞表面に存在しているのですが、その役割はまだよく分かっていません。

 

 

そして、「アレルギー」の主役とも言える「IgE」が炎症を起こして戦います。この現象には「肥満細胞」が関わっています。

 

 

 

 

ちなみに「IgE」の量は、有名なわりに、抗体の中でも少ないです。

 

 

 

それぞれの性質を簡単にまとめます。

 

 

 

なお、イラストの細かい部分は諸説紛々としており、どれが正しいのか分かりません。その為、一番シンプルなものを採用しました。かなり簡略化しているので、ご了承下さい。なお、「IgD」、「IgE」、「IgG」は同じ形をしているように描かれたものが多いので、ここでも同じようにしました。

 

 

 

 

 

 

Ig M

 

 

 

 

 

「IgM」の特徴が以下になります。

 

 

  • 免疫グロブリンの中で最も分子量が大きい

 

  • 5つ結合しているので捕獲力が強い

 

 

  • 「IgM」は、抗原が侵入した時に最初に作られる抗体

 

  • 「B細胞」の受容体として働く

 

  • 「T細胞」の指示がなくても分泌

 

  • 赤ちゃんが始めて作れるようになる抗体

 

 

 

 

Ig A

 

 

 

 

 

粘膜に抗原が侵入した場合、この「IgA」が抗原と戦います。

 

 

特徴は、抗原(外敵)を鼻水、涙、痰等でなんでもくるんで外に出すことです。ここが、特定の敵に反応する「IgE」抗体と違います。

 

 

 

 

この「IgA」抗体がたくさんあって、粘膜で抗原を防ぎきることができれば、アレルギーの主役である「IgE」が働く機会が減るので、炎症が発生しにくくなります。

 

 

逆に「IgA」が少ないと、抗原のさらなる侵入を許してしまうので、「IgE」の仕事を増やします。つまり、アレルギーの症状が酷くなります。

 

 

 

ちなみに、「IgA」が作られる為には「ビタミンA」が必要です。

 

 

 

「IgA」の特徴が以下になります。

 

 

  • 「血清型IgA」と、「分泌型IgA」の2つある

 

 

  • 分泌型は、血液中より粘膜の分泌液(気管支分泌液、唾液、涙、鼻汁、腸管分泌液、前立腺液、腟分泌液)に多く含まれていて、細菌などの侵入を防いでいる

 

 

  • 母乳の主な免疫物質

 

 

  • 腸に多く存在しているので、腸粘膜に不調があると「IgA」が減少する。その結果、普段何も起こらない食材にアレルギー反応が起こったり、下痢になったり、風邪をひきやすくなったりする

 

 

Ig G

 

 

 

 

 

「IgG」の特徴が以下になります。

 

 

  • 「IgM」よりも遅れて産生される

 

  • 「T細胞」の指示がないと作れない

 

  • 血液中の抗体の中で最も数が多い

 

  • 細菌や毒素と結合する能力が高い

 

  • 血中に留まる時間が長い

 

  • 抗体の中で唯一胎盤を通過できるので胎児に移行し、赤ちゃんの免疫が発達するまで守る

 

  • 「オプソニン化」や「中和」の作用が強い

 

 

 

 

Ig D

 

 

 

 

 

「リンパ球」表面に「受容体」として存在しています。

 

 

詳しくは、まだよく分かっていないそうです。

 

 

 

 

IgE

 

 

 

 

 

「花粉症の検査」で測定するのが「IgE」の血中濃度です。

 

 

「IgE」の特徴が以下になります。

 

 

  • 非常に量が少ない抗体

 

  • 気道、消化管粘膜、リンパ節等で作られる

 

  • 花粉症、アトピー、気管支喘息に関わっている抗体

 

  • 「IgE」が作られると、「好塩基球」や「肥満細胞(マスト細胞)」に結合してアレルギー反応を起こす

 

  • 寄生虫を防御すると考えられている

 

 

 

スポンサーリンク

 

 

 

 

アレルギーの種類

 

 

アレルギーに関わる細胞や、抗体についてお話したので、ここからはアレルギーの仕組みについて説明します。

 

 

 

アレルギー反応はタイプあります。

 

 

 

異物が侵入してから数分~8時間以内に起こるものを「即時型 そくじがた」、24時間以上経ってから起きるものを「遅延型 ちえんがた」と言います。

 

 

 

 

  • 即時型・・・数分~8時間以内で起こる

 

  • 遅延型・・・24時間以上経って起こる

 

 

 

花粉症や気管支喘息等、アレルギーの多くは「即時型」です。そして、これには「IgE」が関わっています。

 

 

 

ちなみに、食物アレルギーは「即時型」と「遅延型」があり、前者は「IgE」が関わっていて、後者は「IgG」が関わっています。

 

 

 

それだけでなく、「アレルギー」は、アレルギーが起こるメカニズムごとに、大きくⅠ~Ⅴの型に分けられています。

 

 

 

「即時型アレルギー」はⅠ~Ⅲに分類され、「遅延型アレルギー」はⅣ型になります。

 

 

 

V型は、Ⅱ型アレルギーの特別な形なので、Ⅱ型に含む場合もあります。

 

 

 

 

 

  • Ⅰ型アレルギー・・・(即時型  アナフィラキシー型)

 

 

  • Ⅱ型アレルギー・・・(細胞障害型 細胞融解型)

 

 

  • Ⅲ型アレルギー・・・(免疫複合体型 Arthus型)

 

 

  • Ⅳ型アレルギー・・・(遅延型 細胞性免疫 ツベルクリン型)

 

 

  • Ⅴ型アレルギー・・・(刺激型)

 

 

 

一般的に多くの人が「アレルギー」と呼んでいるのは、Ⅰ型のアレルギーの事です。

 

 

 

というわけなので、この分類でいくと「花粉症」や「蕁麻疹」は、「Ⅰ型アレルギー」になります。

 

 

 

 

ちなみに、「アトピー性皮膚炎」は、Ⅰ型とⅣ型の混合です。

 

 

 

そして、最初に説明した「自己免疫疾患」が、「アレルギー(Ⅱ、Ⅲ型)」に分類されることがあります。

 

 

 

「抗体の種類」といい、「アレルギーの型」といい、複雑になっているので、このへんで混乱して読むのを止めてしまう方もいるかもしれません。

 

 

 

なので、ここでもっとシンプルに考えましょう。

 

 

 

『アレルギーの9割は腸で治る クスリに頼らない免疫力のつくり方 / 著者:藤田紘一郎』より引用

 

 

 

みなさんのなかには「アレルギーという言葉はさまざまな症状に使われて、使い方が混乱している」と思っている人が多いと思います。

 

 

 

確かに各種アレルギーはそれぞれ、原因となる物質や、症状の現われる場所が異なります。そういう意味では、個々のアレルギー病は別の病気のように見えます。

 

 

けれども、アレルギーが起こる仕組みは、実は全部同じなのです。

 

 

 

たとえるなら、お茶のようなものです。

 

 

 

お茶の木そのものは1種類で、その葉っぱが製法によって緑茶になったり、紅茶になったり、烏龍茶になったりします。

 

 

 

もちろん一口にお茶の木といっても、植物分類学的には多くの種類がありますが、「緑茶の木」とか「紅茶の木」といった木はありません。

 

 

 

それと同じで、アレルギーにはいろいろな種類・症状がありますが、「人間の体内で起こっていること」自体は同じなのです。

 

 

(4~5p)

 

 

アレルギーを「木」、原因物質や症状を「葉っぱ」に例えています。

 

 

アレルゲンという「葉っぱの製法」が違うだけで、アレルギー反応が起こるメカニズムは同じです。

 

 

 

従って、「葉っぱ」にあたる何かのアレルギーがある人は、別のアレルギーを持っていることは珍しくありません。

 

 

 

本質である木そのもを解決する必要があるのです。

 

 

 

 

ちなみに、私も「ブタクサ」のアレルギーだけでなく、「ハウスダスト」、「シカカイ(ハーブ)」のアレルギーがあります。

 

 

 

このうち治ったのは「ブタクサ」だけです。

 

 

 

スポンサーリンク

 

 

 

Ⅰ型のアレルギー

 

 

Ⅰ型アレルギーは、液性免疫なので「抗体」が関わっています。「IgE」抗体です。

 

 

 

抗原と接触してから数分~1時間半以内に症状がでます。

 

 

まず、抗原が始めて体内に侵入します。

 

 

 

抗原は「樹状細胞」などに取り込まれて、その情報が「ヘルパーT細胞」に伝えられます。

 

 

 

 

「ヘルパーT細胞」は、抗体を作る働きのある「B細胞」に指令を出します。

 

 

 

 

情報を元に、「形質細胞」がその抗原に合った「IgE」抗体を作ります。

 

 

 

 

 

次に、その「IgE」抗体は、粘膜などに存在する「肥満細胞」に結合します。

 

 

 

 

 

これを「アレルゲンに感作された状態」と言います

 

 

 

 

ここからは、同じ抗原の2回目以降の侵入となります。

 

 

 

ノコノコと抗原が侵入してきて、「肥満細胞に結合したIgE抗体」に結合します。

 

 

 

 

 

 

それが引き金となって、「肥満細胞」は顆粒を放出します。

 

 

 

 

 

 

顆粒の中にあるヒスタミン等の化学伝達物質がばら撒かれることによって、周囲の組織は以下のような状況になります。

 

 

 

  • 血管透過性の亢進

 

 

 

  • 気管支平滑筋の収縮

 

 

 

  • 粘液分泌の亢進

 

 

 

これが「Ⅰ型アレルギー」の流れになります。

 

 

 

アレルギー体質の人は、「IgE」を作りやすく、肥満細胞の細胞膜上にたくさんの抗体を持っているようです。

 

 

 

 

ちなみに、即時型フードアレルギーは、Ⅰ型です。

 

 

 

 

Ⅱ型のアレルギー

 

 

 

Ⅱ型アレルギーは、「自分の細胞を破壊してしまうアレルギー」です。

 

 

液性免疫なので「抗体」が関わっています。抗体の種類は「IgM」と「IgG」です。

 

 

 

正常であれば、免疫は自分の細胞を攻撃しません。

 

 

薬剤や感染等が原因で、細胞や組織を抗原として認識し、それに対して抗体(IgMとIgG)が生産されてしまいます。その結果、自分の細胞を攻撃します。

 

 

 

 

「自己の細胞表面」が抗原と認識されて、そこに抗体が結びつく

 

 

それを「好中球」や「マクロファージ」が攻撃して傷つける

 

 

 

 

その為、細胞傷害型アレルギーと呼ばれます。

 

 

反応は急性なので即時型です。

 

 

 

スポンサーリンク

 

 

 

Ⅲ型のアレルギー

 

 

Ⅲ型アレルギーは、液性免疫なので「抗体」が関わっています。

 

 

「体液に溶けた抗原(可溶性抗原 かようせいこうげん)」と、「IgG」と、「補体」の反応で起こるアレルギーです。

 

 

 

 

「抗原抗体複合体」に「補体」が結合します。それが目印となって「食細胞」が処理をします。

 

 

しかし、この「免疫複合体」が、持続的な感染や、自己免疫疾患などによって過剰に作られると問題が起きます。

 

 

「免疫複合体」の量が食細胞の処理能力を上回ると、生体内を移動して、それが組織や臓器に沈着します。

 

 

 

それが原因で、肥満細胞を刺激します。

 

 

 

すると、その場所で、肥満細胞から化学伝達物質が放出されてアレルギー反応が起きます。

 

 

 

その為、免疫複合型アレルギーと呼ばれます。

 

 

反応は即時型です。

 

 

遅延型フードアレルギーはこのⅢ型です。

 

 

 

 

Ⅳ型のアレルギー

 

Ⅳ型アレルギーは、細胞性免疫なので、「抗体」は関わっていません。

 

 

このアレルギーは、司令官である「T細胞」や、「マクロファージ」が関わっています。

 

 

「T細胞」が放出する「サイトカイン」が、マクロファージを活性化し、炎症を起こします。

 

 

これは「T細胞」の活性化に時間がかかるため反応が遅いので「遅延型」です。

 

 

ツベルクリン反応はⅣ型です。

 

 

Ⅴ型のアレルギー

 

 

自分の組織や細胞を「抗原」と認識してしまうⅡ型アレルギーの特殊な形がⅤ型アレルギーです。

 

 

Ⅱ型との違いは、「抗原」がホルモン等の受容体(レセプター)であることです。

 

 

 

受容体が抗原になる + 抗体

 

 

 

そして、Ⅱ型は細胞傷害型アレルギーでしたが、

 

 

 

Ⅴ型は細胞の機能を低下、あるいは亢進させます。前者は「重症筋無力症」、後者は「グレーブス病(バセドウ病)」です。

 

 

 

刺激型アレルギーとも呼ばれます。

 

 

 

 

Ⅰ型アレルギーの花粉症

 

 

アレルギーの種類について色々と説明してきましたが、多くの人がなっているのがⅠ型の花粉症だと思います。

 

 

次はこの花粉症の原因や対策についてお話します。

 

 

重度の花粉症の人も糖質制限や栄養療法で改善できる

 

 

 

 

スポンサーリンク

 

 

白血球と免疫の仕組みについて分かりやすく説明してみた

 

 

血液に含まれている「白血球 はっけっきゅう」は、アメーバー状の細胞です。

 

 

 

 

この白血球が、防衛軍のように、身体を外敵から守っています。

 

 

 

このように言うと大げさな表現だと思われるかもしれませんが、実際に、身体は常に外敵にさらされているのです。

 

 

 

その証拠に、生体が死ぬと、死後数日で腐敗します。

 

 

 

何故、腐敗するのか…

 

 

 

それは、この世は細菌や病原体などの外敵だらけだからに他なりません。

 

 

 

もし防御システムが無かったら、すぐに細菌が増殖し、腐敗します。

 

 

 

生きている生体が腐らないのは、細菌や病原菌などの外敵から身を守るシステムが絶えず働いているからなのです。

 

 

 

この防衛システムの事を「免疫反応 めんえきはんのう」と言います。

 

 

 

そして、免疫システムの主役が「白血球」です。

 

 

 

本記事では、白血球の特徴や、免疫のシステムについて説明していきます。

 

 

 

スポンサーリンク

 

 

血液に含まれる白血球

 

 

まずは「白血球」がどんなものなのか説明します。

 

 

 

血液は、液体の「血漿 けっしょう」と、

 

 

 

血球の「血小板 けっしょうばん」、「赤血球 せっけっきゅう」、そして、「白血球」に分けられます。

 

 

 

 

 

 

「白血球」は外敵と戦う免疫システムの主役です。

 

 

 

この免疫に関わる細胞のことを、「免疫細胞 めんえきさいぼう」と呼びます。

 

 

 

 

 

「白血球」は、働きや特徴から、以下のようにさらに細かく分けられます。

 

 

 

 

 

 

大まかに3系統があります。

 

 

  • 顆粒球

 

  • 単球

 

  • リンパ球

 

 

 

「単球」と「リンパ球」は無顆粒球です。

 

 

 

ちなみに、白血球の中で一番数が多いのは顆粒球の「好中球」で、全白血球の約半分を占めます。

 

 

 

 

 

免疫細胞の種類と特徴

 

 

免疫細胞は似たような特徴のものが多いです。似ているもの同士がチームプレーをするので、キャラクターを憶えられないと混乱します。

 

 

 

なので、先に免疫反応で活躍する細胞の紹介をします。

 

 

 

 

まずは「顆粒球 かりゅうきゅう」からです。

 

 

 

 

 

 

 

 

顆粒球とは

 

 

「顆粒球」は、外敵を見つけると、処理する為に食べます。そして、取り込んだ異物を分解します。

 

 

 

 

敵をみつける

 

 

捕食

 

 

消化、分解

 

 

 

 

このような行為を「貪食 どんしょく」とか「食作用 しょくさよう」と言い、

 

 

貪食する細胞の事を「食細胞」、「貪食細胞」と言います。

 

 

 

 

好中球

 

 

 

 

白血球の中で一番多い「好中球 こうちゅうきゅう」は、最前線で戦う突撃兵です。

 

 

アクション系の作品に出てくる数が多い雑魚キャラのイメージです。特徴は以下になります。

 

 

 

 

  • 任務:パトロールと外敵駆除

 

  • 武器:活性酸素

 

  • 攻撃の方法:異物を食べて消化する(貪食)

 

  • 攻撃力:マクロファージと大差ない

 

  • 特殊部隊が偏性するまでの戦闘では、好中球が主力部隊

 

  • 炎症部位で生じた膿は、「好中球」の屍

 

 

 

好酸球

 

 

 

 

「好酸球 こうさんきゅう」の特徴は以下です。

 

 

  • アレルギー反応の制御(ヒスタミンを不活性化)

 

  • 貪食能力は弱い

 

  • 寄生虫と闘うことができる

 

 

 

好塩基球

 

 

 

 

 

詳しい事がよく分かっていない「好塩基球 こうえんききゅう」の特徴は以下です。

 

 

  • 感染とアレルギー反応の両方に関与している

 

  • 数が少ない

 

  • 貪食能力が弱い

 

 

 

 

 

 

単球とは

 

次は「無顆粒球」の「単球 たんきゅう」を紹介します。

 

 

 

 

 

 

単球の核の形は、そら豆や腎臓のようです。

 

 

 

この単球には、変身能力があります。

 

 

 

単球は分化して「マクロファージ」や、「樹状細胞」に成長します。

 

 

 

「分化」とは、単純なものが複雑なものに変わることです。

 

 

 

 

マクロファージ

 

 

 

 

「マクロファージ」は、敵を察知する部隊として体中に配備されています。

 

 

 

 

そして、敵をみつけると捕食、消化し、分解します。「マクロファージ」も食細胞です。

 

 

 

別名は「大食細胞」です。

 

 

 

  • 任務:敵の発見、貪食による処理、捕らえた敵の情報を特殊部隊に伝える

 

 

  • 攻撃力:特殊部隊よりは劣る、貪食が限界に達すると破裂して死ぬ

 

 

 

 

樹状細胞

 

 

次に、マクロファージと似た働きをする「樹状細胞 じゅじょうさいぼう」について説明します。

 

 

 

 

 

 

 

「樹状細胞」の仕事は「諜報」です。

 

 

 

貪食能力をもっているので、異物(抗原)を取り込んでその特徴を「リンパ球」に伝えて、攻撃するように指示を出します。

 

 

 

だから「司令塔」でもあります。

 

 

 

 

このように、特殊部隊に敵の情報を伝える細胞のことを「抗原提示細胞 こうげんていじさいぼう」と言います。

 

 

 

 

 

 

 

「好中球」と「樹状細胞」と「マクロファージ」の違いについて説明します。

 

これらは、敵を食べたり、情報を伝えたり…と、働きが似ているので混乱する人も出てくると思います。

 

 

 

  • 好中球(顆粒球)・・・・・・・・食作用

 

  • 樹状細胞(無顆粒球の単球)・・・食作用、抗原提示細胞

 

  • マクロファージ(無顆粒球の単球)・・・食作用、抗原提示細胞

 

 

 

「好中球」は敵を蹴散らすのが専門、「樹状細胞」は敵の情報を伝達するのが専門、「マクロファージ」は両者の中間です。

 

 

 

特に「樹状細胞」と「マクロファージ」が分かりにくいのですが、違うのは抗原を伝える能力です。この能力(T細胞を活性化させる能力)は、樹状細胞の方が優れています。

 

 

そして、以下のような違いもあります。

 

 

  • 樹状細胞・・・獲得免疫に関与

 

  • マクロファージ・・・自然免疫に関与

 

 

 

 

 

リンパ球とは

 

 

免疫システムの特殊部隊である「リンパ球」は、大きくわけて3つです。

 

 

 

 

 

 

まずは「T細胞」から説明します。

 

 

 

 

T細胞の種類と働き

 

 

 

「T細胞」は、以下のように3つに分けられます。

 

 

 

 

 

 

敵が強くて手に負えない場合、「マクロファージ」は「サイトカイン」というアイテムを使って助っ人を召喚します。

 

 

 

 

それに刺激を受けた「樹状細胞」は、取り込んだ敵の情報を連絡します。

 

 

 

その情報を受け取るのが、他のT細胞に命令を下す権限を持った「ヘルパーT細胞」です。

 

 

 

 

「ヘルパーT細胞」もサイトカインを放出して、スナイパーである「キラーT細胞」に戦闘を命じます。

 

 

 

 

 

 

簡単にまとめると…

 

 

 

「マクロファージ」が援軍を呼ぶ

 

 

「樹状細胞」が敵の情報を伝達

 

 

特殊部隊の「ヘルパーT細胞」がキャッチ

 

 

「キラーT細胞」に攻撃命令

 

 

 

 

 

 

「キラーT細胞」は、「マクロファージ」が倒すことが出来なかった敵でも仕留めることができます。

 

 

 

突撃兵である「好中球」や「マクロファージ」の攻撃は貪食でしたが、特殊部隊である「キラーT細胞」は腕利きのスナイパーなので、敵の細胞を傷つけるような武器を使います。

 

 

 

武器はパーフォリン、グランザイムです。

 

 

 

 

「サプレッサー(レギュラトリー)T細胞」は、免疫反応を抑制する働きがあるようですが、存在が疑問視されているという説があったり、図では省略される事も多いです。

 

 

 

 

 

 

「T細胞」の「T」は、「Thymus(胸腺:タイマス)」という意味です。

胸腺は心臓の上にある小さな器官です。

 

 

この「胸腺士官学校」で、「リンパ球」は特殊訓練を受けて「T細胞」になります。

 

 

 

 

 

 

B細胞の働きと役割

 

 

 

 

 

 

「B細胞」は特殊武器の製造を行なう工兵です。

 

 

 

特殊武器は、「抗体(別名:免疫グロブリン)」と言います。

 

 

 

 

 

ちなみに、最初は出撃準備に時間がかかります。

 

 

 

「B細胞」の「B」は「Bone marrow(骨髄:)」由来です。

 

「T細胞」も「B細胞」も基本的には骨髄の幹細胞で作られる…と言われています。しかし、「B細胞」は胸腺での特殊訓練を受けません。骨髄で分化し、成長すると言われています。

 

 

ただし、「血液が骨髄で造られる」という説は、以下の記事でも説明しましたが、信憑性に欠けます。

 

 

血液と赤血球とヘモグロビンについて分かりやすく説明してみた②

 

 

 

 

ナチュラルキラー(NK)細胞の働きと役割

 

 

 

 

 

「ナチュラルキラー細胞」はリンパ球の一種ですが、抗原の情報を受け取ってから攻撃する「T細胞」や「B細胞」とは異なります。

 

 

 

「T細胞」のように胸腺で特殊訓練も受けませんし、「B細胞」のように相手に合わせて武器を使ったりしません。

 

 

 

特殊部隊…というよりフリーランスの兵士です。

 

 

 

そして、マクロファージ等と同じ「自然免疫」です。

 

 

 

パトロールをして、敵を見つけると迅速に攻撃するのですが、命令を受けず、自分で判断し攻撃します。

 

 

 

殺傷能力は高いです。

 

 

 

他のリンパ球との違い

 

 

  • T細胞とB細胞は抗原の情報を受け取ってから戦闘に加わるが、NK細胞は抗原を必要としない

 

  • 「キラーT細胞」のように胸腺で特殊訓練を受けない

 

  • 「B細胞」のように敵の属性に合わせて戦法(抗体を生産)を変えない

 

  • 生まれたままの状態で攻撃する

 

  • 最初から大きな体で、大量の武器を持ってパトロールし、迅速に殲滅する

 

 

 

 

 

一つ一つの細胞の種類について説明したので、次はこれらが防衛システムでどのような部隊に所属して働いているのかについて説明します。

 

 

 

スポンサーリンク

 

 

 

 

自然免疫と獲得免疫

 

 

 

免疫システムのことを「防衛軍」に例えましたが、実は戦闘スタイルの違う2つの部隊に分かれています。それがこちらです。

 

 

 

 

  • 自然免疫(しぜんめんえき)・・・常設部隊

 

  • 獲得免疫(かくとくめんえき)・・・精鋭部隊

 

 

 

 

 

侵略者に対して、一番最初に攻撃を仕掛けるのが常設部隊です。そして、それでも相手が強いなら精鋭部隊が加わる…というシステムになります。

 

 

 

第一部隊である「自然免疫」は、敵をなりふり構わず全力で倒しますが、

 

 

第二部隊である「獲得免疫」は、知的な攻撃を仕掛けます。

 

 

 

 

他にも特徴を述べておきます。

 

 

 

 

第一部隊・自然免疫とは

 

 

「自然免疫」は、最初から備わっている部隊で、攻撃対象は「全ての敵」です。

 

 

 

  • どんな敵に対しても反応が早い

 

 

  • 学習機能がないので、同じ敵を効率よく倒すことができない

 

 

  • 手に負えない時は「獲得免疫」の力を借りる

 

 

  • 貪食細胞(マクロファージ、好中球、樹状細胞)や、NK細胞(リンパ球)の働きによる

 

 

 

 

第二部隊・獲得免疫とは

 

 

獲得した免疫…ですから、敵と戦った経験だけレベルアップしていく部隊です。

 

 

攻撃対象は「特定の敵」です。

 

 

 

  • 脊椎動物にしかない能力

 

 

  • 学習機能があるので敵を分析して、敵の属性に合った攻撃をする

 

 

  • 獲得免疫は、T細胞やB細胞(リンパ球)の働きによる

 

 

 

 

自然免疫の戦術

 

 

ここからは、「自然免疫」の流れについて説明します。

 

 

体は外敵が侵入しにくいように、皮膚や粘膜が外壁となって防御しています。

 

 

しかし、この壁をかいくぐって、敵(抗原)が侵入することもあります。

 

 

 

体をパトロールしていた「好中球」や、「マクロファージ」や、「NK細胞」がこれらを見つけると、攻撃します。

 

 

 

 

ここまでが「自然免疫」です。

 

 

 

 

「自然免疫」は相手が何であろうが「同じ手段」で戦おうとします。例えるなら、相手が剣を持っていても、戦闘機に乗っていても、常に竹ヤリで向かっていくようなもんです。

 

 

 

 

 

これで片付けばよいのですが、場合によっては敵が強すぎたり、数が多すぎたりするわけです。

 

 

 

すると、援軍を派遣するわけですが、その戦闘が「獲得免疫」になります。

 

 

 

 

「自然免疫」だけでは勝てないと悟った「マクロファージ」は、援軍を召喚するために、「サイトカイン」というタンパク質を使います。これは「のろし」とか「警報」みたいなものです。

 

 

 

このように、他の細胞に命令を下したりする物質のことを「シグナル物質」と言います。

 

 

 

「マクロファージ」が「サイトカイン」を放出したことで、「樹状細胞」が刺激されます。

 

 

 

すると、優秀な抗原提示細胞である「樹状細胞」は、「こんな奴がいます」と、取り込んだ敵のデータを伝えます。

 

 

 

その情報を特殊部隊の「ヘルパーT細胞」が受け取り、部下を動かすのです。

 

 

 

 

「樹状細胞」が、「自然免疫」と「獲得免疫」のシステムの橋渡しをしているわけです。

 

 

 

 

「自然免疫」は発見してから攻撃に至るまでが素早いですが、「獲得免疫」は最初は闘うまでに時間がかかります。

 

 

 

しかし、1度攻略した相手は、2度目からは一番効率のよい方法で素早く倒すことができるようになります。

 

 

スポンサーリンク

 

 

 

 

獲得免疫の戦術

 

 

ここからは「獲得免疫」の戦術を説明します。

 

 

「獲得免疫」とは、闘えば闘う程強くなるシステムで、パターンあります。

 

 

  • 体液性免疫

 

  • 細胞性免疫

 

 

「体液性免疫」は「抗体」という武器を使った戦い方で、「細胞性免疫」は抗体を使わず、細胞が直接攻撃する戦い方です。

 

 

それぞれの流れをみていきます。

 

 

 

体液性免疫

 

 

一言で言うと、「特定の敵に命中するミサイル」を使った攻撃です。

 

 

敵の情報を受け取った「ヘルパーT細胞」は、それが「敵である」と認識します。

 

 

「ヘルパーT細胞」は、「B細胞」に命令を出します。

 

 

 

 

すると工兵である「B細胞」は、「形質細胞 けいしつさいぼう」に分化します。「形質細胞」の別名は、「抗体産生細胞 こうたいさんせいさいぼう」です。

 

 

 

 

 

 

 

そして、敵の属性に合った「抗体 こうたい」という武器を製造します。

 

 

 

ちなみに、これは敵に合わせたオーダーメイドの武器なので、違う敵には効きません。おまけに、出撃準備には1~2週間の時間がかかります。その間は、他の免疫細胞が時間をかせぐことになります。

 

 

 

「抗体」が完成すると体液に放ちます。

 

 

 

 

 

「抗体」は、水に溶けやすいタンパク質でできていて、血液、リンパ液、涙、唾液、母乳に含まれています。

 

 

 

 

「抗体」は体液が循環するところならどけでもいけるので、「体液性免疫 たいえきせいめんえき」と言います。

 

 

抗体は敵(抗原)と結合すると「抗原抗体複合体」となります。

 

 

 

これが目印となることで、マクロファージに積極的に食べられるようになります。

 

 

 

抗体と抗原がくっつくことで、敵がよりおいしそうに見え、貪食細胞の食欲が増します。これを「オプソニン化」と呼びます。

 

 

 

こうして、抗原が処理された後、抗体を作る「形質細胞」は徐々に減っていきます。

 

 

 

しかし、一部は敵の記録を伝える老兵となって残ります。これを「免疫記憶細胞 めんえききおくさいぼう」と言います。

 

 

 

 

 

抗体を使った「体液性免疫」は、効率よく外敵を駆除することができます。

 

 

 

しかし、問題もあります。

 

 

 

実は、細胞の中に入ってしまった敵(抗原)は攻撃することができないのです。

 

 

 

 

 

「抗体」は細胞膜を通れないからです。

 

 

 

その為、細胞の中に入ってしまった敵を駆除する場合は、別の方法をとります。

 

 

 

細胞性免疫

 

 

 

ウイルスは自力で増殖することができないので、他の生物の細胞に侵入して、その中で増殖します。

 

 

 

 

その為、「ウイルスに感染した細胞」は、ウイルス製造工場と化してしまいます。

 

 

それはまずいので、このウイルスを退治する必要があります。

 

 

しかし、「抗体」は細胞膜を通過できないので、細胞の中のウイルスを攻撃することはできません。

 

 

 

 

 

 

なので、「抗体」は使わず直接攻撃して、汚染された細胞ごと破壊します。

 

 

 

細胞の中の敵を仕留めることができるシステムを「細胞性免疫 さいぼうせいめんえき」と言います。

 

 

 

 

流れはこうです。

 

 

 

敵の情報を受け取った「ヘルパーT細胞」は、それが「敵である」と認識します。

 

 

 

ここまでは「体液性免疫」と同じです。

 

 

 

すると、「ヘルパーT細胞」は、「キラーT細胞」に命令を出します。

 

 

 

 

「キラーT細胞」は増殖し、「マクロファージ」も集まってきます。

 

 

 

 

「キラーT細胞」が、汚染細胞を直接攻撃破壊し、その後は自然免疫の時より強力になった「マクロファージ」が、食べて処理します。

 

 

 

 

 

役目を終えると「キラーT細胞」は減っていきますが、一部は老兵となって、戦いの記録を残します。

 

 

 

 

「体液性免疫」と「細胞性免疫」は連携して働きます。

 

 

 

 

 

 

 

スポンサーリンク

 

 

 

免疫力が低下する原因になる糖質

 

 

「免疫」は優秀な防衛システムですが、弱点もあります。

 

 

以前もお話しましたが、白血球等の免疫系はブドウ糖に弱いです。

 

 

 

高血糖の環境だと活力を失ってしまうからです。

 

 

血糖値が120以上でそうなります。

 

 

主食を食べる習慣のある人は要注意です。

 

 

 

『横ちゃんのきまま日記 血糖値の上昇が免疫力の低下を招く』より引用

 

 

【糖は免疫システムを下げる】

 

 

これは何十年も前から知られて来たことです。

 

 

1970年代にはもう、研究者の間で、白血球が病原菌や細菌を貪食するためにビタミンCを必要としていることが分かりました。

 

 

白血球は、その周りと比べて50倍ものビタミンCを必要とするので、それを溜め込まなくてはならないのです。

 

 

「食細胞指数」と呼ばれるものがありますが、それは、特定のマクロファージ(大食細胞)やリンパ球がどのぐらい早く病原菌や細菌、ウイルス、がん細胞を食べてしまうか、ということを表す指標です。

 

 

1970年代に、白血球が大量のビタミンCを必要とすること、それは一般的な風邪と闘うために必要だということをライナス・ポーリング博士が発見しました。

 

 

グルコースとビタミンCが、似たような生化学的構造を持っていることは知っていますが、では糖レベルが上がるとどうなるでしょうか? それらは、お互いに細胞に入ろうと拮抗するのです。(競合阻害的)

 

 

ということは、血中に糖がたくさんあると、それだけ細胞に入れるビタミンCも少なくなるということです。

 

 

血糖値が120では、食細胞指数が75%も下がってしまいます。

 

 

ですから、砂糖と食べると、免疫システムがどれだけ下がるかを考えてみてください。

 

 

ここで我々は病気というものの根幹に少しだけ迫ることが出来ます。

 

 

どんな病気についてかは関係ないのです、普通の風邪であろうが、心血管疾患、ガン、骨粗鬆症であろうが、病気の始まりというのは、いつも細胞レベル、分子レベルで起こってくるということ、その場合、インスリンが病気の直接の原因になっているか、それに近いものである。

 

 

 

ちなみに、以下が「グルコース(ブドウ糖)」と「ビタミンC」の構造になります。

 

 

 

 

 

 

『横ちゃんのきまま日記 血糖値の上昇が免疫力の低下を招く』より引用

 

 

萩原 敦さんのFBより転載

 

~血糖値の上昇が免疫力の低下を招く~
 

(血糖値の数値から客観的な免疫力評価の数値を探る)

 

 

 

英語圏の文献で、我々の免疫力の客観的な評価をする場合に、lymphocytic index(リンパ球指数)とかphagocytic index(食細胞指数)なる指標を用い、血糖値の上昇値と関連付けて、記述されていることをよく見かける。

 

この「食細胞指数」や「リンパ球指数」という言葉自体、我が国ではあまり一般的ではないようです。

 

 

(中略)

 

 

たとえば、

 

「血糖値が120を超えると食細胞指数的な免疫力の評価をすると、約75%の免疫力がダウンする。」

 

この説は、ライナス・ポーリング博士が、はじめて世に知らしめた説だそうです。

 

ポーリング博士も研究に値する人物です。後日、改めて、彼についての言及もします。

 

つい先ごろ、比嘉さんという方のFBで、高血糖の赤血球を映像にして投稿されていましたが、その内容は、ひじょうに素晴らしいもので、血糖値が上昇すると、赤血球同士がくっついて、「連携を組み」、血管の中で、あろうことか、「血流をせき止め」、「血流を立ち往生」させることを示していました。

 

 

となると、免疫力の要である「白血球(食細胞やリンパ球他)」も「赤血球の通せん坊」にあい、免疫力を発揮できなくなる云々と述べていました。

 

 

この血糖値120と言う数値が、血流を悪化させる「赤血球通せん坊」作戦が、効果を発揮し、顕著になる数値(ボーダーライン)なんだろうと思います。

 

 

 

 

そして、白血球は細胞なので、タンパク質です。従って糖化反応にも弱いです。

 

インフルエンザ等の感染症の予防は食事が重要です。免疫力を弱らせる食品とは

 

 

 

 

 

免疫の誤作動、自己免疫疾患とアレルギーの違い

 

 

次に、免疫システムに起こる問題について考えてみます。

 

 

 

免疫系の疾患は、大きく分けて2タイプあります。

 

 

  • 自己免疫疾患

 

  • アレルギー

 

 

 

 

「自己免疫疾患 じこめんえきしっかん」とは、自分の組織を「敵」と認識して攻撃してしまう疾患です。

 

 

例えるなら「オウンゴール」です。

 

 

 

 

一方「アレルギー」は、害がない異物に対して、過剰に攻撃をしてしまう疾患です。

 

 

例えるなら「過剰防衛」です。無駄な攻撃のせいで周囲の組織に被害が波及します。

 

 

 

「自己免疫疾患」については以下の記事を、

 

炎症と自己免疫疾患について分かりやすく説明してみた

 

 

 

 

「アレルギー」については以下の記事で説明します。

 

 

アレルギーと抗体について分かりやすく説明してみた

 

重度の花粉症の人も糖質制限や栄養療法で改善できる

 

 

 

 

スポンサーリンク

 

 

乳酸のエネルギー源としての働きと、疲労との関係について分かりやすく説明してみた
乳酸のエネルギー源としての働きと、疲労との関係について分かりやすく説明してみた

 

乳酸は長い間、疲労の原因と考えられてきたが、実はエネルギー源だから良い物質である

 

 

…近年、このような見解が一般的になっています。

 

 

 

しかし、この「乳酸は体に良い物である」というイメージが蔓延するのは良い事ではありません。

 

 

 

何故なら、乳酸の蓄積は慢性疾患の原因になるからです。

 

 

 

以下の記事で、乳酸の蓄積によって血液が酸性化することが、細胞が癌化する原因であると説明しました。 

 

 

余命わずかの末期癌患者が退院できたのは病院での栄養療法のおかげだった!

 

癌細胞と癌家系について分かりやすく説明してみた

 

 

 

乳酸礼賛することで、このような負の側面が見えなくなってしまいます。

 

 

 

だからもう少し、乳酸についてフェアな説明が必要です。

 

 

 

 

 

生体に無駄な機能はありません。

 

 

 

「進化論」を否定していた昆虫学者のファーブルは、生き物は最初から完璧な状態であり、そうでなければ生きることができないと主張していました。

 

 

 

生体に備わっているシステムは、途中から獲得したものではなく、意味があって最初から備わっている・・・ということです。

 

 

 

その理屈から考えると、「乳酸」も全く無駄な存在ではありません。理由があって存在していることになります。

 

 

 

 

いけないのは、過剰になって蓄積することです。

 

 

 

癌の記事では乳酸の悪い面についてお話したので、今回は、「乳酸は何のために存在しているのか」、そして、「乳酸の良い面だけを利用して蓄積させないようにするにはどうしたらいいのか」についても解説していきます。

 

 

 

スポンサーリンク

 

 

乳酸とは

 

 

 

「乳酸」を理解する為に必要なので、エネルギーの話をします。

 

 

 

生体が生きていく為には、「ATP(エーティーピー)」というエネルギー物質が必要です。

 

 

ATP(アデノシン3リン酸)

 

 

 

どんな生物でも、これが不足すると慢性疾患になり、無くなると死にます。

 

 

 

この「ATP」は、基本的に細胞内で作られて、細胞内で消費されます。

 

 

 

そして、作る為には材料が必要です。それが、糖質、脂質、タンパク質です。

 

 

 

 

ATPの材料=糖質、脂質、タンパク質

 

 

 

 

このうちの「糖質(を分解して生じたブドウ糖)」を材料にエネルギーを生み出す時に、副産物として生じるのが「乳酸」になります。

 

 

 

副産物として生じた「乳酸」は、ディーゼル車から出る煤のようなものです。溜めるようなものではありません。

 

 

 

“酸”とつくように、pH程度の酸性物質です。

 

 

 

 

 

ただし、ブドウ糖を完全代謝すれば「乳酸」は生じません。

 

 

 

完全代謝とは、細胞の中の「ミトコンドリア」で何段階もの代謝をして、二酸化炭素と水に分解することです。そうでなければ「乳酸」になると思って下さい。

 

 

 

 

 

では、この乳酸ができる流れをご説明します。

 

 

 

 

乳酸が生じる仕組み

 

 

 

乳酸の元となるのは、グルコース(ブドウ糖)です。

 

 

 

グルコース(ブドウ糖)

 

 

 

 

グルコースは、糖質を含む食事から摂る事もできますし、糖質以外の材料を使って肝臓や腎臓で合成することもできます。

 

 

 

  • 食事から摂取

 

  • 肝臓や腎臓で合成(糖新生 とうしんせい)

 

 

 

ちなみに、このグルコースは、癌細胞の大好物です。

 

 

癌細胞はブドウ糖が好き

 

 

 

 

ここではイメージしやすいように、食事から糖質を摂ったところから説明します。

 

 

 

ご飯やパン、野菜…等、糖質を摂取すると消化器官でブドウ糖にまで分解されます。

 

 

 

 

糖質

 

 

グルコース(ブドウ糖)

 

 

 

 

このグルコースが、生体が生きていく上で必要なエネルギー物質ATPを生み出す材料として使われます。

 

 

 

 

グルコース(ブドウ糖)は、まず細胞の「細胞質基質 さいぼうしつきしつ」というところで、何段階かの反応を経て「ピルビン酸」という物質になります。

 

 

 

 

 

細胞質基質で起こる解糖系

 

 

 

 

 

グルコース

 

 

(何段階か反応)

 

 

ピルビン酸

 

 

 

 

この反応を「解糖系 かいとうけい」と言います。

 

 

 

 

「解糖系」では、グルコース分子から、ピルビン酸が分子できます。

 

 

 

 

解糖系ではグルコース1分子がピルビン酸2分子になる

 

 

 

 

そして、エネルギー物質ATPが分子できます(※正確には4分子できるのですが、解糖系の反応をする為に始めに2分子を使うので、得たATPは合計2分子になります)

 

 

 

 

解糖系でATPは2分子生産される

 

 

 

 

そして、解糖系の反応で、「NAD」という化合物が「NADH」に変化します。この「NADH」が分子できます(これについては後で詳しく説明します)。

 

 

解糖系でNADHは2分子生産される

 

 

 

 

 

ここで、解糖系でグルコース1分子から生じるものをまとめます。

 

 

ピルビン酸・・・2分子

 

エネルギー物質ATP・・・2分子

 

NADH・・・2分子

 

 

 

 

 

 

ATPができたから終わり…ではありません。

 

 

 

乳酸が生じるかどうかは、グルコースが分解されてできた「ピルビン酸」が、この先どうなるかによって決まります。

 

 

 

つまり、ミトコンドリアでも代謝するかどうかです。

 

 

 

細胞質基質では「解糖系」という反応でしたが、

 

 

 

ミトコンドリアで代謝する場合は、「クエン酸回路 くえんさんかいろ」と「電子伝達系 でんしでんたつけい」という反応が起こります。

 

 

 

 

細胞とミトコンドリア

 

 

 

 

細胞質基質だけで代謝するより、ミトコンドリアで代謝した方がより多くのATPを作り出すことができます。

 

 

 

前者は「焚き木」のエネルギー、後者は「発電所」のエネルギーに例えられます。

 

 

 

 

  • 解糖系・・・エネルギー

 

 

  • 解糖系 → クエン酸回路 → 電子伝達系・・・エネルギー

 

 

 

 

で、「ピルビン酸」の進路は2つです。

 

 

 

一つはミトコンドリアで代謝して、より多くのATPを作り出すルート。

 

 

もう一つはミトコンドリアでは代謝しない、乳酸が発生するルートです。

 

 

 

嫌気性解糖と好気性解糖

 

 

 

左が乳酸が生じるルートですが、以下の条件でそうなります。

 

 

  • 酸素が不足している

 

  • ビタミンB1を始めとした栄養素の不足

 

 

 

それぞれの理由を説明します。

 

 

 

酸素が不足することでミトコンドリアで代謝できない

 

 

ミトコンドリアは多くのATPを作る事ができるのですが、酸素を要求します。

 

 

 

従って酸素がない状態ではミトコンドリアで代謝することはできません。

 

 

反対に細胞質気質で行なわれる解糖系は酸素を必要としません。

 

 

 

その為、激しい運動などで酸素が不足するような場合は、ミトコンドリアでの代謝ではなく、解糖系で酸素に頼らずエネルギーを産生します。

 

 

その場合、ミトコンドリアで代謝できないので、ピルビン酸は乳酸になります。

 

 

 

ビタミンB1を始めとした栄養素の不足でミトコンドリアで代謝できない

 

 

ミトコンドリアで代謝する為には、「補酵素 ほこうそ」が必要になります。

 

 

 

補酵素とは、酵素のサポート役のことで、ビタミンの事をさします。

 

 

 

「酵素」は、体内の化学反応を調節する働きがあります。酵素と補酵素が協力して働く場合は、補酵素なしでは反応ができません。

 

 

 

ピルビン酸がミトコンドリアで代謝する為には、ビタミンB1を始めとしたビタミンB群が必要です。

 

 

 

正確には、ビタミンB1、B2、B3(ナイアシン)、ビタミンB5(パントテン酸)、アルファリポ酸です。

 

 

 

従って、これらが不足していても、ピルビン酸はミトコンドリアで代謝できないので、乳酸に変換されます。

 

 

 

 

 

ここまでが、グルコース → ピルビン酸 → 乳酸 になる条件と流れになります。

 

 

 

では、何故ピルビン酸は乳酸になるのか?

 

 

次はそのことについて説明します。

 

 

 

 

スポンサーリンク

 

 

 

ピルビン酸が乳酸になる理由とは

 

 

 

ピルビン酸が乳酸になるのは理由があります。

 

 

 

 

それを理解する為には、まず「NAD」について知っておく必要があります。

 

 

 

 

 

NAD(ニコチンアミド・アデニン・ジヌクレオチド)は、全ての生物に存在する補酵素です。

 

 

 

 

「NAD」は、水素を外す「脱水素酵素」の補酵素(サポート役)で、水素(の持つ電子)を預かる働きをします

 

 

 

このような働きをする物質を「電子伝達体 でんしでんたつたい」と言います。

 

 

 

 

  • 水素を外す働き・・・脱水素酵素(酵素)

 

  • 外した水素を預かる・・・NAD(補酵素)

 

 

 

 

 

NAD(酸化型)

 

 

 

水素(の持つ電子)を預かる前が「NAD」です。これを酸化型と言います。

 

 

 

そして、水素(の持つ電子)を預かった後が「NADH」になります。これを還元型と言います。

 

 

 

NADH(還元型)

 

 

 

「酸化」とは、電子や水素を失うこと、「還元」とは電子や水素を得ることです。

 

つまり、NADが水素を預かってNADHになるのが還元で、NADHが水素を失ってNADに戻るのが酸化です。

 

 

 

 

解糖系では、グルコースからピルビン酸になるまでに「NAD」が還元されて、「NADH」になります。

 

 

 

正確に言うと、「グリセルアルデヒド3リン酸」から「1.3-ビスホスホグリセリン酸」になる反応で、酸化型の「NAD」は、水素(の持つ電子)を預かって「NADH」になります。

 

詳しい説明は以下の記事に書いています。

 

 

解糖系について分かりやすく説明してみた

 

 

 

 

NADは、正確には「NAD+」

 

NADHは、正確には「NADH + H+」と表記します。

 

 

ですが、ここではシンプルに「NAD」と「NADH」と書きます。その理由が知りたい方は以下の記事をご覧下さい。

 

 

クエン酸回路(TCA回路)について分かりやすく説明してみた

 

 

 

 

 

NAD → NADH

 

 

 

こうして解糖系では、NADがNADHに還元されるわけですが、このNADは体内にそう多くありません。

 

 

 

NADHに変わってばかりだったら、NADが枯渇してしまいます。

 

 

 

そうなっては、解糖系も続きません。

 

 

 

なので、還元された「NADH」を、再び「NAD」に戻す必要があります。

 

 

 

それがピルビン酸が「乳酸」に変換される理由です。

 

 

 

 

スポンサーリンク

 

 

 

 

NADHからNADへ戻す方法

 

 

 

ピルビン酸を生成するまでが「解糖系」です。

 

 

 

その後、その「解糖系」でできた「NADH」を「NAD」に戻す方法はいくつかあります。

 

 

 

生物の種類や、酸素があるかないか…によって、以下のように分類できます。

 

 

 

  • 好気呼吸

 

  • 嫌気呼吸

 

 

 

 

詳しく説明します。

 

 

 

 

解糖系で還元された「NADH」は、もしこの後ミトコンドリアで代謝されるのであれば、「電子伝達系 でんしでんたつけい」という反応で利用されます。

 

 

 

そこで「NADH」は、預かった水素を渡して(酸化して)、「NAD」に戻ります。

 

 

 

 

その流れは、以下の記事でお話しています。

 

電子伝達系(呼吸鎖)について分かりやすく説明してみた①複合体Ⅰ~Ⅱ

 

 

 

このミトコンドリアでの反応は酸素が必要なので「好気呼吸 こうきこきゅう」と言います。この反応では、乳酸は発生しません。

 

 

 

 

しかし、ミトコンドリアで代謝されない場合もあります。これは酸素を必要としないので「嫌気呼吸 けんきこきゅう」と言います。

 

 

 

この場合は、別の方法で「NADH」を「NAD」に戻します。

 

 

 

 

どうするかというと、「NADH」が預かった水素を「ピルビン酸」に押し付つけます。

 

 

 

この反応を進める酵素を「乳酸脱水素酵素 にゅうさんだっすいそこうそ」と言います。

 

 

ピルビン酸とNADH

 

 

 

 

「NADH」は、持っていた水素を手放したことで「NAD」に戻るのです。

 

 

 

しかし、水素を押し付けられた(還元)ピルビン酸は、乳酸になります。

 

 

 

乳酸

 

 

 

 

「乳酸脱水素酵素」は、「ピルビン酸 → 乳酸」だけでなく、「乳酸 → ピルビン酸」の変換もします。詳しくは後で説明します。

 

 

 

 

こうやって「NADH」の水素をピルビン酸に押し付けて「NAD」を再生させるわけですが、植物が行なう「アルコール発酵」や、乳酸菌が行なう「乳酸発酵」もこれに属します。

 

 

 

呼吸

 

 

 

 

 

この再生の仕組みがあるおかげで、解糖系がストップすることはありません。

 

 

 

 

『心の病は食事で治す / 著者:生田哲』より引用

 

 

血液中の乳酸レベルの上昇が原因で発生する不安障害

 

 

糖類と疲労物質である乳酸のレベルには密接な関係がある。

 

 

その関係は、砂糖や精製されたデンプンを食べれば食べるほど、乳酸レベルが上がることだ。

 

 

では、乳酸レベルが上がると、疲労を感じる以外にどんな問題が発生するのか。

 

 

 

カルシウムは脳の興奮を抑えるはたらきがある。

 

 

このカルシウムにくっつくのが乳酸。

 

 

このため、カルシウムに乳酸がくっついた分だけ、血液中のカルシウムレベルが下がる。こうして脳の興奮が抑えられなくなり、不安になる。

 

 

たとえば、低カルシウム状態は乳酸ナトリウムを注射することによって人工的につくり出すことができる。このとき、脳の興奮が高まり、不安障害の症状が現れる。

 

 

乳酸から水素が取り除かれる(酸化する)とピルビン酸ができる。この反対に、ピルビン酸に水素がくっつく(還元する)と乳酸ができる。

 

 

このように生体ではピルビン酸と乳酸は互いに行ったり来たりしている。

 

 

これを化学では平衡状態にあるという。

 

 

この平衡は、特定の物質を大量に摂取するとピルビン酸が減少し、乳酸が増える方向に移動する。

 

 

その特定の物質というのは、砂糖、カフェイン、アルコールである。これらの物質を多くとると、乳酸が血液中に蓄積し、疲労と不安が発生する。

 

 

幸運なことに、マグネシウム、カルシウム、ナイアシンは、この平衡をピルビン酸が増える方向に移行させる。

 

 

マグネシウムは不安をやわらげ、ナイアシンは乳酸から水素を奪いピルビン酸にする化学反応を助け、乳酸レベルを下げることで、不安の発生を抑える。

 

 

 

 

 

ここまでの話を要約します。

 

 

 

「乳酸」とは、ブドウ糖がピルビン酸に分解されて、ピルビン酸がミトコンドリアで代謝されない場合に、解糖系を止めないためにNADHをNADに戻す為に生じる物質です。

 

 

 

ブドウ糖ですから、元はご飯やパン、甘い物、野菜等…の糖質です。

 

 

 

乳酸はpH程度の酸性物質なので、これが大量に増えると血液が酸性化して、最悪「乳酸アシドーシス」、それを回避するために体が対応した結果が癌や慢性疾患です。

 

 

 

乳酸が生じる理由が分かったところで、次はこの生じた乳酸がどうなるか説明していきます。

 

 

 

乳酸は肝臓に運ばれて、20%はピルビン酸に戻されてミトコンドリアの「クエン酸回路」に入ります。そして、80%はブドウ糖に戻されて再利用されます。

 

 

 

 

 

  • 20%・・・ピルビン酸になってクエン酸回路へ

 

  • 80%・・・乳酸を材料にしてブドウ糖を合成する

 

 

 

ただし、先ほども言ったように、ピルビン酸が「クエン酸回路」へ入るには条件が必要です。ミトコンドリアで代謝するには栄養素や酸素が必要です。

 

 

 

次は80%の、乳酸を材料にブドウ糖を合成する流れについて説明します。

 

 

 

スポンサーリンク

 

 

 

 

 

コリ回路

 

 

 

近年では「乳酸は悪くない、乳酸はエネルギー源だ」と言う意見が主流になっています。

 

 

このように、乳酸のメリットばかりを強調し、乳酸の害をなかったことにしてしまうような表現は問題があると思っているのですが、乳酸がエネルギーになるという部分は間違いではありません。

 

 

 

乳酸がエネルギー源として活用される流れについて説明します。

 

 

 

グルコース(ブドウ糖)が代謝されてピルビン酸になり、ミトコンドリアで代謝できない場合に乳酸になるわけですが、

 

 

この乳酸は、血液にのって肝臓に運ばれます。

 

 

 

 

腎臓と肝臓

 

 

 

そして、肝臓で乳酸は「糖新生 とうしんせい」という反応によって再び「グルコース」に再生されます。

 

 

 

 

「糖新生」とは、糖質以外の材料からブドウ糖を作り出す仕組みのことです。「糖新生」はどこでもできるのではなく、肝臓や腎臓で行なわれます。

 

 

糖質を食事から摂取しなくても大丈夫なのは、この「糖新生」があるお陰です。

 

 

糖新生について詳しくは以下の記事をご覧下さい。

 

 

糖新生の仕組みについて分かりやすく説明してみた

 

 

糖質制限をしているのに血糖値が高いのは、糖新生が原因かもしれません

 

 

 

 

以下が乳酸からの「糖新生」の流れになります。

 

 

 

 

 

乳酸を糖新生する経路

 

 

 

 

そして、乳酸が発生し、エネルギーとして利用される流れはこうです。

 

 

 

 

①筋肉や赤血球でグルコースが代謝されて乳酸が生じる

 

 

②生じた乳酸は血液にのって肝臓(や腎臓)に運ばれる

 

 

③乳酸は「糖新生」によってグルコースに変換される

 

 

④グルコースは血液に放出され再び赤血球や筋肉のエネルギーになる

 

 

⑤①~繰り返し

 

 

 

 

このように、赤血球や筋肉 ⇔ 肝臓・・・と異なる臓器を行き来します。

 

 

 

この反応を「コリ回路」と言います。

 

 

 

 

コリ回路

 

 

 

このように、通常は生じた乳酸は再利用されるので、「乳酸はエネルギー源だから良い物質だ、めでたし、めでたし…」

 

 

 

 

・・・と言いたくなりますが、気になる点があります。

 

 

 

糖新生を行なうにもエネルギーが必要だからです。

 

 

 

 

解糖系では、グルコースからピルビン酸まででATPは分子作られますが、その結果生じた乳酸をグルコースに再利用するにはATPを分子も使ってしまいます。

 

 

 

 

これでは、マイナスATPです。

 

 

 

 

ちなみに、「糖新生」でグルコース1分子を合成する為に必要なATPは、材料によって異なり、どこからスタートするかによって違います。

 

 

 

  • ピルビン酸から・・・・分子のATP

 

  • クエン酸回路から・・・分子のATP

 

  • グリセロールから・・・分子のATP

 

 

 

 

 

ピルビン酸からスタートする乳酸は、糖新生のなかでも最もATPを使う材料だと言えます。

 

 

乳酸を再利用する時の方がエネルギーを消費するのです。

 

 

 

『Wikipedia コリ回路』より引用

 

 

回路

 

 

筋肉が激しい運動の際短い時間に大量のエネルギーを必要とすると、筋肉細胞は嫌気的なグルコース分解を行って大量のアデノシン三リン酸 (ATP) を作り出す。

 

 

この際に副産物として生成された乳酸が血液の流れに乗って肝臓に運ばれて、乳酸脱水素酵素によってピルビン酸に変換され、その後糖新生によってグルコースが再生される。

 

 

グルコースは血中に放出されて赤血球や筋肉で再びエネルギーとして使われる。

 

 

 

ATPの数を見てみると、1回あたり嫌気呼吸で2分子のATPが生成し、糖新生で6分子のATPが消費されるため、正味4分子のATPが減少している。

 

 

このためコリ回路はエネルギー消費系(同化過程)である。

 

 

重要性

 

 

コリ回路の重要性は、嫌気的な条件下で筋肉の乳酸アシドーシスを防ぐところにある。

 

 

乳酸は化学反応の末端であり、酵素によってピルビン酸に変換される他ない。

 

 

 

 

「乳酸アシドーシス」とは、乳酸が溜まって、血液の酸性度が高くなりすぎた状態のことです。

 

 

 

コリ回路の重要性は、嫌気的な条件下で筋肉の乳酸アシドーシスを防ぐことにある・・・と書いてあるので、

 

 

 

乳酸の変換は、エネルギーとしてあてにすることがメインではなく、あくまで、NADHをNADに戻す為の変換、乳酸アシドーシスの回避の為の変換・・・という意味合いが強いのではと考えられます。

 

 

 

 

乳酸が発生して、コリ回路でグルコースに変換すればするほどエネルギー物質「ATP」が減っていくわけですから、優れたエネルギー源とは言えません。

 

 

 

 

ちなみに、マイナスATP…と聞くと、私はこの話を思い出します。

 

 

『精神科医こてつ名誉院長のブログ グルコースと脂肪酸、ATPで考える』より引用

 

 

2)嫌気性解糖だけではATP不足で生きてゆけない

 

 

 

B1不足の脚気ではピルビン酸をアセチルCoAに変換できない

 

 

好気性解糖に入れないため、米を食べれば食べるほどマイナスATPとなる

 

 

ATP作成のため体内の脂肪酸と筋肉を燃焼させるが、それが尽きれば痩せ細って死亡する

 

 

 

ガンも同じ、ガンは嫌気性解糖のみを行うためマイナスATPとなる

 

 

体内の脂肪酸と筋肉を燃焼させるが、それが尽きれば痩せ細って死亡する

 

 

やはり、脂肪酸を十分量摂取することが必要

 

 

 

 

「乳酸はエネルギー物質だから悪くない」という話になってはいますが、

 

 

 

生じた乳酸をエネルギーに変換すればするほどATPが減る・・・というのは疲労の原因じゃないのかと突っ込みたくなります。

 

 

 

 

このような側面がある以上、乳酸はエネルギーとして頼りすぎてはいけないということです。

 

 

 

 

次は、乳酸をエネルギー源に変える為に必要な要素があるので、そのことについてお話しておきます。

 

 

 

それは、「乳酸脱水素酵素」と、そのサポートをする補酵素「NAD / NADH」です。

 

 

 

乳酸脱水素酵素とナイアシン

 

 

 

乳酸をエネルギー源にする為には、まず、乳酸をピルビン酸に変換する必要があります。

 

 

ここで、ピルビン酸を乳酸にする時に働いた「乳酸脱水素酵素(乳酸デヒドロゲナーゼ)」が働きます。

 

 

これは、ピルビン酸と乳酸を相互変換する酵素で、全ての細胞にあります。

 

 

補酵素は電子伝達体の「NAD / NADH」です。

 

 

 

乳酸脱水素酵素は、「糖新生」では、乳酸をピルビン酸に変換します。

 

 

 

 

乳酸

 

 

ピルビン酸

 

 

 

 

「乳酸脱水素酵素 にゅうさんだっすいそこうそ」は、血液検査では「LDH(lactate dehydrogenase)」と表示されています。

 

 

 

基準値は120~240なのですが、これが低すぎると、乳酸をエネルギーにする力が弱いので「糖新生」が上手く機能しません。その場合、乳酸がたまりやすいです。

 

 

 

 

  • 200台前半・・・疲れやすい

 

  • 140未満・・・ナイアシン欠乏が深刻

 

 

 

 

LDH値が基準値よりも高い場合は、以下が考えられます。高すぎるのも問題です。

 

急性肝炎、肝硬変、急性心筋梗塞、悪性貧血、悪性腫瘍、白血病、悪性リンパ腫、その他激しい運動、溶血…等

 

 

 

LDHが不足する原因は「タンパク質不足」と「ナイアシン不足」が考えられます。

 

 

というのも、「乳酸脱水素酵素」は酵素です。

 

 

酵素はタンパク質でできているので、タンパク質が不足すると、当然酵素も不足します。

 

 

 

そして、「乳酸脱水素酵素」の補酵素は、「NAD / NADH」です。

 

 

 

この合成には「ナイアシン(ビタミンB3)」が必要です。その為、ナイアシン不足でも働きが低下します。

 

 

 

乳酸を変換させるには、酵素であるタンパク質と、補酵素であるナイアシンを不足させないようにする必要があります。

 

 

 

  • 乳酸脱水素酵素の材料・・・タンパク質

 

  • 補酵素NADの元・・・・・ナイアシン

 

 

 

 

ここまで、乳酸をグルコースに変換することでエネルギーにする話をしてきました。

 

 

 

一方で、乳酸には別のエネルギーの使い方があるので、それについてもお話しておきます。

 

 

 

 

この乳酸をエネルギーにする細胞がいるのです。

 

 

 

スポンサーリンク

 

 

 

 

乳酸をエネルギー源にするニューロン(神経細胞)

 

 

 

乳酸の効果的な使われ方を知るために、脳の細胞のエネルギー代謝の仕組みについてお話します。

 

 

 

 

 

脳の細胞は大きくわけて種類あります。

 

 

 

「ニューロン(神経細胞)」と「グリア細胞」です。

 

 

 

以下が「ニューロン(神経細胞)」です。思考する細胞で、ミトコンドリアが多いです。

 

 

ニューロン(神経細胞)

 

 

 

 

一方、「グリア細胞」は「ニューロン(神経細胞)」のサポート役で、思考はしません。ただし、数はニューロンの10倍以上だそうです。

 

 

 

「グリア細胞」はいくつか種類があり、「中枢神経系」と「末梢神経系」で少し異なります。

 

 

 

 

  • ニューロン(神経細胞)・・・思考する

 

  • グリア細胞・・・・・・・・・思考しない

 

 

 

 

 

 

「脳にはブドウ糖が必要」と言われていますが、実は、ブドウ糖をエネルギーにしているのは、考える細胞「ニューロンで」はなく、「グリア細胞」の方なのです。

 

 

 

「ニューロン」のエネルギー源は、ブドウ糖ではなく、「ケトン体」と、「グリア細胞のエネルギー代謝で生じた乳酸」になります。

 

 

 

 

  • ニューロンのエネルギー源・・・ケトン体、乳酸

 

  • グリア細胞のエネルギー源・・・ブドウ糖

 

 

 

 

 

『体内年齢がよみがえる科学 ケトン体革命―究極のアンチエイジング理論― / 著者:佐藤拓巳』より引用

 

 

 

脳内でブドウ糖を取り込むのは、実は神経細胞ではない。

 

 

その周囲に数多くあるグリア細胞である。

 

 

グリア細胞はブドウ糖を取り込んで、乳酸という最も代謝しやすい分子に変換し、神経細胞に渡す。

 

 

 

この過程は鳥の親がヒナに、半分消化した食物を吐き出して与えるのとよく似ている。

 

 

 

神経細胞は、鳥のヒナと同じように大変に世話のかかる細胞なのである。

 

 

 

実は成人の脳では神経細胞の10倍の数ほどのグリア細胞があり、脳は神経細胞の臓器ではなく、グリア細胞の臓器なのだ。

 

 

 

しかも、乳酸が神経細胞のエネルギー基質となる。

 

 

 

グリア細胞で行なわれる「ブドウ糖から乳酸への転換」はゆっくりとしか進まない。
従って血中のブドウ糖を増やしても、神経細胞に渡される乳酸の量は殆ど変わらない。

 

 

だから頭脳労働するからといって糖質を体内に投入しても、神経活動はまず増加しない。それどころか、低血糖症が起こり、神経活動が抑制されるのである。意図とは逆の結果が表れることになる。

 

 

これに対してケトン体は、グリア細胞における化学変換が必要ない。

 

 

ケトン体は直接神経細胞のミトコンドリアに取り込まれて、神経細胞の働きを上げることができる。

 

 

絶食の経験のある人ならわかるが、絶食をして3日後くらいから、頭がさえて、アイディアがどんどん生まれるようになることがある。

 

 

これは肝臓で大量のケトン体が生産されて、脳にある神経細胞のミトコンドリアに直接作用するからである。

 

 

(28p~30p)

 

 

 

図にするとこんな感じです。

 

 

 

 

グリア細胞のエネルギー源はグルコースで神経細胞のエネルギー源は乳酸

 

 

 

脳では、「グリア細胞」がグルコースを代謝して生じた乳酸を、「ニューロン」がエネルギー源にする・・・という仕組みになっています。

 

 

 

このような関係が筋肉でもあります。

 

 

 

グリア細胞にあたるのが「速筋」、神経細胞にあたるのが「遅筋」です。

 

 

 

 

というわけなので、次に乳酸と筋肉の話をします。

 

 

 

 

速筋と遅筋

 

 

 

筋肉は、「速筋」と「遅筋」の2タイプがあり、両者は性質が違います。

 

 

 

 

速筋の働きとエネルギー源

 

 

「速筋 そっきん」とは、瞬間的に大きな力を出す筋肉です。イメージとしては、ヒラメが獲物をパクッと捕らえる時のような動きです。

 

 

 

人間がする運動で言うと、全速力で走ったり、ジャンプしたり、重いものを持ち上げたりする動きです。

 

 

 

「速筋」のエネルギー源は糖質です。

 

 

 

しかし、筋肉に少ししかなく、すぐに枯渇してしまうので、長く力を出し続けることはできません。

 

 

 

どちらかというと、いざという時に使う筋肉なので、長時間の乱用には向いていないです。

 

 

 

従って普段使いの筋肉ではありません。ヒラメに限らず、獲物を瞬間的に仕留める動物は、動く時までじーっとしていますし、普段ぐうたら寝ていたりします。

 

 

 

フルパワーはずっと続かないということです。

 

 

 

速筋の特徴

 

  • 瞬間的に大きな力を出す(収縮の速度が速い)

 

  • 長時間の使用は向かない

 

  • エネルギー源は糖質

 

 

 

速筋は白い色をしているので、別名は「白筋」です。

 

 

 

「ミオグロビン」という酸素を貯蔵する赤色のタンパク質が少ないので、白い色をしています。ちなみに、ヒラメは白いです。

 

 

 

 

 

遅筋の働きとエネルギー源

 

 

 

「遅筋 ちきん」とは、力は小さくて長時間運動を続ける事ができる筋肉です。運動のイメージは、ゆったりと泳ぎ続けるマグロのような動きです。

 

 

 

人間がする運動でいうと、ジョギングやエアロビクスや水泳等です。

 

 

 

「遅筋」のエネルギー源は、「脂肪」と「速筋で発生した乳酸」です。

 

 

 

 

 

遅筋の特徴

 

  • 力が小さい(収縮の速度が遅い)

 

  • 長時間の使用に向いている為普段使いできる

 

  • エネルギー源は脂肪と乳酸

 

 

 

遅筋は赤い色をしているので、別名は「赤筋」と言います。

 

 

赤色のタンパク質(酸素を貯蔵するミオグロビン)を多く含んでいるからです。遅筋の動きが多いマグロは、ミオグロビンが多いので赤身が多いです。

 

 

 

遅筋は、ミトコンドリアが多いです。

 

 

 

 

 

・・・はい。これらの特徴は、「ニューロン(神経細胞)」と「グリア細胞」の関係と似ていますね。

 

 

 

スポンサーリンク

 

 

 

 

乳酸をエネルギー源にする遅筋

 

 

 

ここで、話を乳酸に戻します。

 

 

 

「グリア細胞」のエネルギー代謝で発生した「乳酸」を、「ニューロン」がエネルギー源にするように、

 

 

 

 

「速筋」で生じた乳酸は、「遅筋」に運ばれてエネルギー源として活用する仕組みになっています。

 

 

 

 

  • 速筋のエネルギー源・・・糖質

 

  • 遅筋のエネルギー源・・・脂肪、乳酸

 

 

 

 

以下を読むと、速筋と遅筋のエネルギー代謝の違いがよく分かります。長いので3分割にします。

 

 

 

 

『健保のつぶやき さすが萩原さん 素晴らしい』より引用

 

 

佐藤さん、2時間は無理ですよ。

 

 

 

人間の体内に留め置ける、糖の量は、たかだか、50キロの人で、「500グラム未満」ですから、学者によったら、もっと少ないという学者もいますからね、それらが、普通に、500グラムだけで、血糖や、筋肉や、脳等で代謝される分と、肝臓の備蓄分等で、2時間は無理でしょう。

 

 

 

いくらブドウ糖添加の水分を要所要所で、補給しても、「有酸素運動」の基本は、「脂質」ですから・・そもそも、「糖は嫌気的解糖作用の時だけ代謝される」のですよ。

 

 

 

有酸素の時は、脂質なんですよ。

 

 

 

40キロを嫌気的解糖作用でやっていたら、乳酸地獄になって、コリ回路も間に合わないから、筋肉痛で走れなくなりますよ。それ以前に、呼吸しないと死んでしまう。

 

 

 

呼吸してるっていうことは、酸素と脂質でミトコンドリアでエネルギーを使ってるということなんですよ。

 

 

 

アスリートの人は、「嫌気的解糖」の本当の意味を理解していない人が、多いですね。

 

 

 

「※酸素を使わないで、速筋を利用するときに、糖が代謝され乳酸が分泌されるのです。」「息をとめた時だけ、糖を代謝するのです。」

 

 

 

逆に言えば、「呼吸していたら、筋肉内では、糖は代謝されないのです。」

 

 

 

この大原則をほとんどの人がしらないから、運動の前や、運動中に、スタミナスタミナとか言って、糖を摂取して、調子悪くなるのですよ。

 

 

 

 

 

全然違います、糖代謝は、まず①赤血球の解糖系の代謝 ②グリア細胞の解糖系の代謝 ③息を止めて踏ん張るような時、筋肉内の速筋、いわば嫌気的解糖系の代謝 がメインです。

 

 

 

ですから、普通に運動していない時の代謝は、①と②がメインなんです。

 

 

 

重量挙げ等の運動をする時に筋肉の速筋で糖代謝が起きる時以外は、糖は代謝されていないのです。

 

 

 

もっぱら、①と②です。

 

 

 

代謝ではありませんが、備蓄分の糖が肝臓と筋肉と骨等に備蓄されていますが、これらを合わせると、体重50キロの人で、おおよそ500グラム未満なのです。

 

 

 

この数字は一定にしないと、ダメなのです。

 

 

 

だから、糖代謝をターゲットにした、無酸素運動は、ダイエットにはなりません。

 

 

 

何度も言いますが、瞬発力で、無酸素で、嫌気的解糖作用の亢進を引き起こしても、乳酸が分泌されて、コリ回路により、また、筋肉内に糖が戻ってくるのですよ。いたちごっこですし、糖の備蓄分を代謝させても無意味ですし、無駄なことになります。

 

 

 

体内組成の糖の量を一定に保つために、過剰に糖質を摂取した時に、インシュリンが分泌されて、中性脂肪に変換されるのですよ。

 

 

 

糖が変化した中性脂肪をターゲットにするダイエットが正しいダイエットのあり方になるのです。

 

 

 

ダイエットはあくまでも、酸素と脂質で、ミトコンドリアでエネルギーを産生する方式を目指すべきなのです。

 

 

 

無酸素はダイエットになりません。糖代謝を目指したダイエットはダイエットにならないのです。ご理解いただけたでしょうか?

 

 

 

 

佐藤さんが言うパフォーマンスというのは、いわゆるアスリートのパフォーマンスで、解糖系が入っている、瞬発力+持久力の話ですよ。

 

 

 

私が言ってるのは、駆け引きや、勝負や、自分の記録の更新を狙うような人の話ではないですよ。

 

 

 

健康の為、ダイエットの為、有酸素運動だけで、長距離をマイペースで走ろうという人の話です。

 

 

 

競技志向や、それなりの目標を持った人は、必ず、走っていても酸素を吸っていても、微妙に踏ん張って、無酸素に近い状態が何度も起きるのですよ、その時に糖代謝が起きるのです。

 

 

 

だいたいそういう場合、呼吸が乱れますが、極端な話散歩していても、少しコースを変えて階段を上るようなコースに変えただけで、瞬発力が必要になり、嫌気的解糖が起きるんですよ。

 

 

 

だから、何か目標を持って走る人や、ダイエットだけ、健康の為だけ、と言う人では、同じ有酸素運動でも、その内容は、変わってくるのですよ。

 

 

 

 

 

スポンサーリンク

 

 

 

 

乳酸の毒性を忘れてはいけない

 

 

 

乳酸はエネルギー源になるので、全く悪いわけではありません。

 

 

 

ですが、たくさんあればいい・・・というわけでもありません。

 

 

 

むしろ、蓄積すると有害なので、こちらの方を警戒するべきです。

 

 

 

例えば、「脳腫瘍」という病気があります。

 

 

 

これは、「ニューロン(神経細胞)」が癌化したものではなく、乳酸を発生させる「グリア細胞」が癌化したものです。

 

 

 

原因は乳酸の蓄積です。

 

 

 

 

このように、乳酸を処理する仕組みがあるからといっても過剰になると不具合が出てきます。

 

 

 

 

『ガンの特効薬はミトコンドリア賦活剤 酸化・糖化・炎症・毒・栄養障害は乳酸がカギ』より引用

 

 

人体の酸化の1番の原因は、乳酸の蓄積です。

 

 

乳酸は具体的な数値を伴って、細胞や血液を酸化させます。

 

 

乳酸が細胞をpH5~6に酸化させ、血液をpH7.3以下に酸化させます。

 

 

ミトコンドリアはpH7.35以上の弱アルカリ性でないと活動できないので、乳酸の蓄積によってATP不足と細胞の障害という致命的な不具合を招きます。

 

 

ブドウ糖=乳酸×2です。

 

 

乳酸はブドウ糖を2つに割っただけの、単純な糖です。

 

 

余った糖(乳酸)は、毒性を持ちます。

 

 

毒性を発揮した糖は、タンパク質を劣化させ、AGEs(アクリルアミドなど)を作ります。

 

 

乳酸の蓄積による劣化が、老化や病気の原因です。

 

 

ガン細胞が分泌する乳酸が、慢性炎症の根本原因です。

 

 

ミトコンドリア機能不全のガン細胞は、必ず乳酸が蓄積し、大量の乳酸を分泌します。

 

 

蓄積した乳酸は、炎症性サイトカインであるIL-6・IL-23・IL-17などを増強し、慢性的な炎症を起こし続けます。

 

 

慢性炎症はガン・慢性病の原因であり、細胞を焼き続けて破壊します。

 

 

毒と言えば、水銀などの重金属やトランス脂肪酸などの化学物質を想像します。

 

 

しかしミトコンドリア毒は、それだけではありません。

 

 

体内で作られる「毒性を持った乳酸」が、最も恐ろしい毒です。

 

 

毒性で水銀より劣る乳酸ですが、蓄積される量が圧倒的に多いのです。

 

 

ワクチンなどに水銀が仕込まれていますが、普通はそんなに水銀を入れ続ける事はありません。

 

 

しかし食事の6~8割が精製糖質の現代人は、無尽蔵に乳酸を作り続けています。精製糖質が毒性を持った乳酸に変わることを知らない現代人は、間違った食生活を変えようとしません。

 

 

病気になっても病気の原因を入れ続けるので、病気が治るはずもありません。

 

 

精製糖質を摂るようになってから、日本は脚気というミトコンドリア病=乳酸アシドーシスに苦しめられてきました。

 

 

ビタミン・ミネラルなどを削ぎ落とし、破壊している現代食は、乳酸を溜めるには理想的な食事です。

 

 

クエン酸回路や電子伝達系の図を見るとよくわかるのですが、ビタミンB群やミネラルが不足すると、ブドウ糖はクエン酸回路に入れません。

 

 

結果的にブドウ糖は乳酸に変わり、細胞や血液に蓄積していきます。

 

 

精製糖質を過剰摂取し、ビタミン・ミネラルなどが不足している現代人は、間違いなく栄養障害です。

 

 

栄養障害が乳酸の蓄積を生み、病気を蔓延させています。

 

 

栄養障害が乳酸を蓄積させ、余った(蓄積した)乳酸が毒性を持ちます。

 

 

乳酸が酸化・糖化・炎症を引き起こし、老化・病気の原因です。

 

 

乳酸がミトコンドリア機能不全を拡散し、人体を劣化させています。

 

 

乳酸という明確なターゲットを意識して、病気の予防・治療をしましょう。

 

 

日本にも本気で病気を治す「名医」が増えていますが、まだ「乳酸の毒性」に気付いていない人がほとんどです。

 

 

「活性酸素」の陰に隠れて、真の黒幕である「乳酸」に気付けないのです。

 

 

 

「エネルギー源」という局所に注目して評価するのではなく、「蓄積の有害性」を含めた大局を見るべきです。

 

 

 

乳酸の蓄積による慢性疾患が多いのですから、そう断言します。

 

 

 

 

また、「疲れの原因は乳酸ではなく活性酸素である」・・・という説もありますが、乳酸は活性酸素の原因です。

 

 

 

 

乳酸が酸化、糖化、炎症を引き起こします。酸化とは活性酸素によって劣化した状態です。

 

 

 

 

乳酸をなくす方法

 

 

 

乳酸をエネルギー源にする為に、「乳酸脱水素酵素」であるタンパク質と、その補酵素「NAD / NADH」の元であるナイアシンを不足させないようにすることが重要だとお話しましたが、ここでは乳酸をなくす方法を紹介します。

 

 

 

 

『藤川徳美医師 facebook 2017年3月7日』より引用

 

 

 

筋肉がかたいということは、伸縮がスムーズにゆかず、フィラメントのすべり運動がうまくゆかないことでしょう。

 

 

ふつうの人の場合、これは乳酸の蓄積またはフィラメントの酸化によっておこります。

 

 

いわゆる筋肉のコリがそうです。

 

 

この乳酸をなくす方法は二つあります。

 

 

 

一つは、ビタミンB1によって、これを二酸化炭素と水にまで分解してしまう方法です。

 

 

もう一つは、細胞膜の透過性をビタミンEによって正常化して、乳酸を筋肉細胞から外に追い出す方法です。

 

 

むろん、両者の併用が理想的なわけで、これは肩凝りをほぐす方法にもなります。

 

 

T嬢の場合、筋肉は頻繁に収縮を繰り返しますが、ビタミンB1が不足していれば、そのつど乳酸が発生します。

 

 

だから、筋肉がかたくなるのは当然といえるでしょう。

 

 

一方、筋肉の収縮にはエネルギーを必要としますが、そのエネルギーは、脂肪酸、グリコーゲン、クレアチンリン酸などから作られます。

 

 

筋肉がかたくなっているのは、こういうもののストックが底をついている証拠でもあるのです。

 

 

このうちクレアチンリン酸は、ビタミンEがないと、筋肉中に保持されません。

 

 

このビタミンがなかったら、クレアチンリン酸は、利用されることなしに、尿に出て行ってしまいます。

 

 

 

 

それぞれのビタミンの役割をまとめます。

 

 

 

 

  • ビタミンB1・・・乳酸を二酸化炭素と水まで分解する反応に必要

 

  • ビタミンE・・・・乳酸を筋肉細胞から追い出す、クレアチンリン酸を筋肉中に保持する

 

 

 

「乳酸は疲労物質ではない」と言われているのですが、このように疲労物質だと仮定してビタミンを使うと効果がでるところをみると、やはり疲労物質ではないか・・・とも思うわけです。

 

 

 

 

以下の話を読むと特にです。

 

 

 

『精神科医こてつ名誉院長のブログ 三石理論 ビタミンB1 注射の効果』より引用

 

 

冬になると、私はスキーを楽しむことにしている。

 

 

数年前まで、一行の中に高校生がいた。われわれの仲間は、習慣のようにビタミンB1、100mgの注射を、毎晩やったものだ。

 

 

高校生氏は、これをバカにしたように横目で見ていた。

 

 

毎日5時間も雪の上を滑っていると、初日はともかく、三日目ぐらいになると、筋肉痛で苦しみだすのが通例といってよい。

 

 

ところが、ビタミンB1の大量投与をやっていれば、そういうことにならないのだ。

 

 

さすがの若者も、注射の効果を目のあたりに見て、自分にもしてくれと頼むようになった。

 

 

このような例は、一つや二つではない。

 

 

 

筋肉疲労の原因物質が乳酸であってみれば、ビタミンB1の効果が期待されてよいわけだ。

 

 

ーーーーーーーーーーーーーーーーーーー

 

 

40年前の話なので、医療関係者でなくても注射ができた様子。

 

 

B1、100mgの注射はやはりかなり強力です。

 

 

以前話したように、注射後1時間以内に体内の乳酸を処理してしまうようです。

 

 

つまり、乳酸がなくなるということは、ガンの餌がなくなるということになる。

 

 

 

”糖質はガンの餌”という言葉があるが、正確に記すと”糖質により生じた乳酸がガンの餌”という表現の方が正しいと考えている。

 

 

 

 

私は現実に起こっている事を重視するので、「乳酸は疲労物質である」という考えを無視することはできません。

 

 

 

 

以下の記事でも説明しましたが、乳酸の本当の害に気付かせない為に、「疲労」や「筋肉」という局所に目を向けさせることで、乳酸の怖ろしさを煙に巻いている可能性があります。

 

余命わずかの末期癌患者が退院できたのは病院での栄養療法のおかげだった!

 

 

 

また、そういう説を唱える専門家が脚光を浴びるような社会になっています。

 

 

教育と洗脳は紙一重、確認をしなければどんな学問もただの信仰である

 

 

 

 

乳酸の害を大したことがないように捕らえている情報に注意した方がいいでしょう。

 

 

 

 

 

まとめ

 

 

 

ポイントを整理します。

 

 

 

  • ミトコンドリアで代謝できない場合、ピルビン酸は乳酸になる

 

 

  • ピルビン酸が乳酸に変換される理由は、解糖系で生じた「NADH」を「NAD」に戻す為

 

 

  • 乳酸をエネルギー源にする為の「コリ回路」は、ATPを4分子失う

 

 

  • 解糖系に依存した細胞から生じた乳酸は、別の細胞のエネルギー源になる

 

 

  • 乳酸は酸化、糖化、炎症を引き起こす

 

 

  • 乳酸をピルビン酸に変える「乳酸脱水素酵素」はタンパク質、補酵素の「NAD / NADH」はナイアシンが材料

 

 

  • 乳酸をなくすには、ビタミンB1とビタミンEを摂取する

 

 

 

 

グルコース(ブドウ糖)をエネルギー源にする場合は、以下のようになります。

 

 

 

ピルビン酸から乳酸になる流れ

 

 

 

 

このブログでは糖質の危険性をうったえているので、「糖質を控えて脂質をエネルギーにする方が良い」・・・と言っています。

 

 

 

 

しかし、糖質を控えられない人がいます。例えば以下のような方達です。

 

 

 

  • 体質的に糖質制限ができない人

 

  • 糖質制限をしているが、付き合いでたまに糖質を食べる人

 

  • 思想の為のベジタリアン

 

  • 家族の食事とは別に糖質制限食を作るのが難しい人

 

  • 仏壇のお供え物を食べる習慣がある人

 

  • 強度の運動をする為にエネルギー源として糖質が必要な人

 

 

 

 

糖質を摂られる方は、右の代謝し切る方法を選ぶと健康的です。

 

 

 

具体的な対策は、以下の記事でお話しています。

 

ベジタリアンや糖質を止められない人が、健康の為に摂っておきたい栄養素とは

 

 

 

最悪「乳酸」が発生しても、消費しきれるレベルに抑えるというのもポイントです。ただし、「糖新生」にはATPを6分子消費するので、その点は注意が必要です。

 

 

 

 

 

そして、図を見てもらったら分かると思いますが、ミトコンドリアで代謝する場合、「解糖系」と「クエン酸回路」と「電子伝達系」で得られるATPは、合計で38分子です。

 

 

 

 

しかし、乳酸が発生するルートは、「解糖系」で得られるATPだけになります。グルコース1分子からはATPは2分子なので、少ないです。

 

 

 

 

低エネルギーなので体温も低くなります(癌患者は35度台です)。

 

 

 

 

そして、ATPの生産数が少ないので、足りない分を速さで稼ぐ仕組みになっています。その為、「解糖系」は、ミトコンドリアでのATP生産よりも100倍近く速いです。

 

 

 

 

糖質はすぐにエネルギーになる・・・というのはこの為です。

 

 

 

一見、良い事のように聞こえますが、悪い面もあります。

 

 

 

「解糖系」だけに依存するとエネルギーが足りないので、体はとりあえずATPの数を稼ごうとします。

 

 

 

その為、糖質が止められなくなります。

 

 

 

 

これは、とりあえずエネルギーをよこせ・・・という体の反応です。

 

 

 

 

体には乳酸を処理する仕組みがありますが、なるべく溜めないように心がけた方が良いです。

 

 

 

余命わずかの末期癌患者が退院できたのは病院での栄養療法のおかげだった!

 

 

 

スポンサーリンク

筋萎縮性側索硬化症やアルツハイマー病等の神経変性疾患に栄養療法が効果的な理由
筋萎縮性側索硬化症やアルツハイマー病等の神経変性疾患に栄養療法が効果的な理由

 

 

ほとんどの人は栄養療法で難病を治療する事に関心を持ちません。

 

 

 

病気は病院で治すもの、薬で治すものという考えだからです。

 

 

 

ですが、癌や膠原病等、治すのが難しい慢性疾患が栄養療法で改善した例がでてきました。

 

余命わずかの末期癌患者が退院できたのは病院での栄養療法のおかげだった!

 

 

 

そして、最近では難病である「多発性硬化症(MS)」がほぼ完治したという話まででてきました。

 

神経難病である多発性硬化症(MS)が半年でほぼ完治した治療法

 

 

 

「難病」と聞くと、凄く難しいと思ってしまいますが、治ったメカニズムを調べると実にシンプルです。

 

 

従って、私は他の難病も栄養療法で改善できると考えています。

 

 

 

そこで、以下の記事で難病である「筋萎縮症 きんいしゅくしょう」について話をしました。

 

 

筋萎縮症という難病の原因と根本的な治療法について考えてみた

 

 

 

本記事はこの続編になります。

 

 

 

「筋萎縮症」とは筋肉が萎縮する病気なのですが、タイプが2種類あります。

 

 

 

一つは「筋肉そのものがダメージを受けて萎縮していく」もの、

 

 

 

そしてもう一つは、「筋肉をコントロールしている神経細胞がダメージを受けて、その結果筋肉が萎縮する」ものです。

 

 

 

結果は同じですが、原因が違います。

 

 

 

「筋萎縮性側索硬化症 きんいしゅくせいそくさくこうかしょう(ALS)」という疾患があるのですが、これは後者で、神経細胞が死んでいく「神経変性疾患」になります。

 

 

 

この疾患の原因や改善方法について調べたのですが、情報が少ないです。

 

 

 

 

そこで、少し大局的にみることにしました。

 

 

 

同じ「神経変性疾患」であるアルツハイマー病や、パーキンソン病は栄養療法で改善したという情報が多いです。

 

 

 

なので、これら「神経変性疾患」の本質をみることで、「筋萎縮性側索硬化症」の原因や改善方法を考えることにしました。

 

 

 

種類が違っても、神経細胞が死ぬという特徴は同じだからです。

 

 

 

『がんの漢方治療と補完・代替医療 銀座東京クリニック 神経変性疾患とケトン食』より引用

 

 

神経変性疾患とは、様々な原因により脳内の様々な部位で神経細胞が病的に死滅してしまうために生じる疾患の総称です。

 

 

疾患ごとに障害を受けやすい神経細胞の種類がある程度決まっており、障害される神経細胞の働きにより疾患の症状が決まります。

 

 

アルツハイマー型認知症は記憶を担当する神経細胞(海馬など)の障害であり、筋萎縮性側索硬化症(ALS)は運動を担当する神経細胞(運動ニューロン)の障害です。

 

 

パーキンソン病は運動を調節する神経細胞のうちドパミン神経の障害で、脊髄小脳変性症は運動を調節する神経細胞のうち小脳などの障害です。

 

 

 

 

 

スポンサーリンク

 

 

神経変性疾患の種類と特徴

 

 

 

「神経変性疾患」は、以下のように分けられます。

 

 

 

  • スムーズな運動が出来なくなる

 

  • 体のバランスが取りにくくなる

 

  • 筋力が低下する

 

  • 認知機能が障害される

 

 

 

 

『順天堂大学医学部付属順天堂医院 脳神経内科 変性疾患部門(変性疾患とは)神経変性疾患とは』より引用

 

 

神経変性疾患とは脳や脊髄にある神経細胞のなかで,ある特定の神経細胞群(例えば認知機能に関係する神経細胞や運動機能に関係する細胞)が徐々に障害を受け脱落してしまう病気です.

 

 

残念ながらまだ原因はわかっていません。脱落してしまう細胞は病気によって異なっています。

 

 

 

大きく分けるとスムーズな運動が出来なくなる病気,体のバランスがとりにくくなる病気,筋力が低下してしまう病気,認知能力が低下してしまう病気などがあげられます.

 

 

1 スムーズな運動が出来なくなる病気:

 

パーキンソン病,パーキンソン症候群(多系統萎縮症,進行性核上性麻痺など)など

 

 

 

2 体のバランスが取りにくくなる病気:

 

脊髄小脳変性症,一部の痙性対麻痺など

 

 

 

3 筋力が低下してしまう病気:

 

筋萎縮性側索硬化症など

 

 

 

4 認知機能が障害されてしまう病気:

 

アルツハイマー病,レビー小体型認知症,皮質基底核変性症など

 

 

神経変性疾患がどのような機序で、なぜ特定の人に起きるのか、始まりはいつなのかも含めてあまりよくわかっていませんが,高齢者に発病しやすい傾向があることから、加齢そのものがリスクであると考えられています.

 

 

患者さんの家族が同じような症状を持っている事は少ないですが(弧発性),一部の患者さんは血のつながった家族の中に同じ症状、もしくは似た症状を持った方がいて遺伝する事が分かっています(家族性)。

 

 

最近の研究の進歩により私たちの施設から世界的にも有名なパーキンソン病の原因遺伝子が発見されましたが、さらに多くの遺伝子、蛋白が世界各国で発見されそれらの機能が調べられています.

 

 

その結果異常な機能を持った蛋白や、必要がなくなった蛋白が分解されずに細胞内にたまってしまい,ミトコンドリアと呼ばれる細胞内でエネルギーを供給する小器官の機能障害、活性酸素を始めとした細胞にとって毒となる成分の暴露が発病に関与するのではないかと考えられています.

 

 

 

>脱落してしまう細胞は病気によって異なっています。

 

 

 

・・・とあるので、どこがダメージを受けるかは、その人の遺伝的な弱点が関係すると思われます。

 

 

 

本質は、どこの神経細胞であれ、そもそも何故神経細胞が壊れるのかです。

 

 

 

 

 

神経細胞(ニューロン)が壊れるわけ

 

 

 

神経細胞は何故壊れるのか・・・

 

 

そのヒントが「認知症の治療は薬より食事改善の方が効果的だ」という話にあります。

 

 

 

『藤川徳美医師 facebook 1月2日』より引用

 

 

高タンパク/低糖質食が継続できればアルツハイマー型認知症は進行しない

 

 

用語の解説;

 

 

HDS-R(長谷川式認知症スケール);日本で最も用いられている認知症テスト、30点満点で20点以下なら認知症。

 

 

数唱;100-7の計算や数字の逆唱などの計算、4点満点でレビー小体病(DLB)では低下しやすく、アルツハイマー型認知症(SDAT)では保持される。

 

 

遅延再生;覚えてもらった三つの言葉を後で思い出してもらう。6点満点でDLBでは保持され、SDATでは低下する。

 

 

MMSE;世界で最も用いられている認知症テスト、30点満点で20点以下なら認知症。

 

 

ーーーーーーーーーーーーーーーーー

 

 

症例1;70代前半の男性、奥さんとともに来院。

 

H26.9、

 

HDS-R20、数唱4/4、遅延再生2/6。

 

MMSE21。

 

診断、SDAT。

 

 

元々甘い物好き。奥さんに高タンパク/低糖質食を指導し、以後奥さんが食事管理をきっちり行っている。

 

H29.10、

 

HDS-R20、数唱4/4、遅延再生2/6。

 

MMSE21。

 

認知症症状の進行はない。

 

 

ーーーーーーーーーーーーーーーーーーー

 

 

症例2;80代前半の女性、娘さんとともに来院。

 

H26.10、

 

HDS-R17、数唱3/4、遅延再生1/6。

 

MMSE22。

 

診断、SDAT。

 

 

元々一人暮らしをしていたが、認知症症状が目立つようになったため娘一家と同居するようになった。娘さんに高タンパク/低糖質食を指導し、以後娘さんが食事管理をきっちり行っている。

 

H29.10、

 

HDS-R26、数唱4/4、遅延再生4/6。

 

MMSE23。

 

認知症症状は改善している。

 

 

ーーーーーーーーーーーーーーーーーーーーーー

 

 

SDATは慢性に進行する認知症で、毎年HDS-Rで3点程度ずつ低下すると言われている。

 

 

レミニールなどの抗認知症薬は、認知症を改善させるものではなく、1~2年進行を緩やかにする作用。

 

 

上記の症例でも薬は使用しているが、薬の効果より食事改善の効果が圧倒的に大きいと判断している。

 

 

SDATは最近では3型糖尿病と言われており、糖質の過剰摂取により発症して進行する。

 

 

患者の食歴を聞くと、大盛りご飯に漬け物や、饅頭などの甘い物好きの人がとても多い。何十年もそのような食事をしてきたことが原因である事は明らかであり、年単位で高タンパク/低糖質食を行うと、認知症の進行を抑制でき、改善する場合もある。

 

 

本当言えば、B50、ナイアシン、C、Eなどのメガビタミンを加えればさらに良いはずだが、パラダイムが違いすぎて説明しても理解されそうにないので、まだ実行できていない。

 

 

 

「アルツハイマー型認知症」は、糖質の過剰摂取が原因です。

 

 

 

糖質が認知症を引き起こす理由は、ズバリ糖化です。

 

 

 

骨も皮膚も筋肉も、ホルモンや酵素や神経伝達物質も免疫細胞も・・・体はタンパク質でできています。

 

 

糖質を過剰摂取すると、余った糖が、体のタンパク質と結びついて細胞を変性させます。

 

 

この反応の事を「糖化反応」と言い、

 

 

その反応で最終的に出来る毒性の強い物質のことを「AGE(最終糖化産物)」と言います。

 

 

 

糖質を摂ると、この現象が体のどこで起こっても不思議ではありません。

 

 

 

関節が糖化すれば音が鳴りやすくなったり、胃が糖化すれば胃もたれや胃下垂になったり…痔や歯槽膿漏も糖化です。

 

 

 

糖化すると細胞が劣化するので、その部分が弱ります。

 

 

 

神経細胞も例外ではありません。

 

 

 

『リバーシティクリニック総合医療センター 抗糖化コラム 糖化とアルツハイマー』より引用

 

 

アミロイドβという蛋白が何らかの作用を受けて組織に沈着しやすくなり、それが溜まって脳の神経細胞の死滅を引き起こすという考え方が一般的ですが、糖化がアミロイドβの凝集や沈着を促進、加速させているとも考えられています。

 

 

また、糖化によって体内に発生したAGEs(糖化最終生成物)が細胞死(アポトーシス)を引き起こすことも分かっています。

 

 

 

アルツハイマー病に限らず、癌や膠原病など、糖質の過剰摂取によって起きる病気は、何故か「糖質が悪い」ということを無視して病気を解決しようとします。無視とまではいかなくても触れないようにしています。

 

 

 

その為、標準治療を選択する患者は、医師が注意しない糖質を食べながらの治療になるので、根本的に治ることはありません。

 

 

 

病気を作りながら病気を治すというマッチポンプが横行しています。

 

 

 

 

スポンサーリンク

 

 

 

 

異常タンパク質の蓄積とは

 

 

 

アルツハイマー型認知症に限らず、神経変性疾患について調べると、

 

 

神経細胞死と、異常タンパク質の蓄積の特徴が書かれています。

 

 

 

  • 神経細胞死

 

 

  • 異常タンパク質の蓄積

 

 

 

気になるのは後者です。

 

 

 

「異常タンパク質の蓄積」について調べると、小難しいことが書かれていますが、糖化でタンパク質が変性しただけじゃないのかと疑ってしまいます。

 

 

 

タンパク質は、数多くの弱い相互作用によって立体構造が保たれています。

 

 

従って、加熱、攪拌、酸、アルカリ・尿素などの変性剤の処理・・・といった影響で、簡単に立体構造が変化したり、性質が変わってしまうのです。

 

 

以下はタンパク質の変性の一例です。

 

 

ゆで卵 + 熱 → ゆで卵

 

牛乳 + 酸 → 凝固

 

卵白 + 攪拌 → メレンゲ

 

 

 

 

 

糖化反応もタンパク質の変性です。

 

 

 

タンパク質 + 糖 + 熱 → 糖化

 

 

 

「熱」というのは体の場合、体温です。

 

 

 

「タンパク質」の部分が、「骨」だったり、「筋肉」だったり、「皮膚」だったり、「内臓」だったり、「神経細胞」だったりするわけです。

 

 

 

「体のタンパク質が変性する」といってもイメージが掴めないと思うので、以前紹介した記事を載せておきます。

 

 

赤血球のヘモグロビンが糖質によって変性するとどうなるか・・・というお話です。

 

 

ちなみに、ヘモグロビンはこれです。もちろんタンパク質です。

 

 

 

 

 

 

『老けたくなければファーストフードを食べるな 老化物質AGEの正体 著者:山岸昌一』より引用

 

 

「ヘモグロビンA1c」が長い時間、高い血糖値の下に置かれると、糖のたんこぶがどんどん増えていきます。

 

 

そして糖まみれになって、最終的には「AGE(終末糖化産物)」という物質に変質していきます。

 

 

AGEの姿として、次のようなイメージを想像してみてください。

 

 

ヘモグロビンというタンパク質の周囲に四方八方からお菓子のように糖がベタベタとくっついた状態です。

 

 

こうなると、もう元のヘモグロビンには戻ることができません。

 

 

ヘモグロビンとは似ても似つかない 〝異常な物質〟 に変質していきます。

 

 

 

やっかいなのはこのAGEという最終的な糖化物質が、なかなか代謝されずに、長期間体内にとどまるという点です。

 

 

 

赤血球が四ヶ月で入れ替わっても、AGEだけは残ってどんどん蓄積されていく。

 

 

長く人間の体にとどまりつづけるということから、「高血糖の記憶」という現象と一致するのではないか。血糖値を元に戻しても、高い血糖値のときと同じように合併症の病気が進行するのは、AGEがそのまま体内にとどまりつづけるからではないか。

 

 

このことを確かめるために、AGEを人工的につくって、人間の細胞にふりかけてみました。

 

 

するとどうでしょう。このAGEは予想通りに細胞を攻撃したり、組織を劣化させ、老化を加速させた。悪さの限りを尽くしたのです。

 

 

そしてひとたびAGEまで進化すると、元のタンパク質には戻らない。

 

 

「ヘモグロビンA1c」は正常なヘモグロビンに置き換わりますが、AGEのほうは二度とヘモグロビンには戻りません。

 

 

その上、長いこと人間の体内にとどまって悪さをする。「高血糖の記憶」という現象も、AGEによってきれいに説明できるわけです。

 

 

(32p~33p)

 

 

 

 

勘の良い方はお気づきだと思いますが、ここに答えが書かれています。

 

 

重要な部分を要約します。

 

 

 

  • AGEはタンパク質の周囲に糖がベタベタとくっついた状態で「異常な物質」

 

  • AGEは元のタンパク質に戻らない

 

  • AGEは、なかなか代謝されずに長期間体内に留まり蓄積される

 

  • AGEは細胞を攻撃したり、組織を劣化させ、老化を加速させるので毒性が強い

 

 

 

最悪です。

 

 

 

私はよく「セルライト」の話をします。体の外側につくので、目で確認できるからです。運動や食事制限をして体が痩せても、何故か「セルライト」はほとんど落ちません。

 

 

 

糖化した組織というのは簡単には戻りません。

 

 

 

これは血液の「ヘモグロビン」の話ですが、「ヘモグロビン」を「神経細胞」に置き換えて考えると恐ろしいですね。

 

 

ちなみに、アルツハイマー病の人の前頭葉を調べると、健康な人に比べて3倍以上のAGEが蓄積しているそうです。

 

 

 

なので、「アルツハイマー型認知症」は、糖質を控える糖質制限が有効的なのです。

 

 

 

そして、この事は理屈が共通している他の神経変性疾患にも当てはまります。

 

 

 

 

付け加えると、糖化だけでなく、酸化にも注意が必要です。

 

 

 

『Dr.GOTOの老化研究所 05-異常たんぱく質はなぜ増えるのか?』より引用

 

 

 

タンパク質が活性酸素に出会うと、主に、そのアミノ酸単位(アミノ酸残基)から出ている側鎖部分が活性酸素と反応して種々の化学変化を起こします。

 

 

化学変化を起こしやすい部分は、機能にかかわりの深いことが多いので生じた酸化修飾タンパク質は、本来の機能を失ってしまう可能性が高いのです。

 

 

 

 

「酸化」と「糖化」のどちらとも気をつける必要がありますが、現代人が真っ先に注意した方がいいのは「糖化」です。

 

 

 

必要な量に対して、摂取する量が多すぎるからです。

 

 

 

 

 

 

 

スポンサーリンク

 

 

 

異常タンパク質を分解するシステム

 

 

異常なタンパク質を作らないようにすることも大切ですが、できてしまった異常タンパク質をデトックスする事も重要です。

 

 

 

生体を構成するタンパク質は、1度合成されたものがずっと存在するのではなく、合成と分解を繰り返しています。

 

 

この合成と分解のサイクルのことを「代謝回転 たいしゃかいてん」と言います。

 

 

 

表面的には変化があるように見えなくても、体は古くなったものを壊して入れ替える作業を常に行なっているのです。

 

 

 

その為、「代謝回転」が悪くなると不健康です。再生が滞ってもダメですが、破壊が滞ってもダメです。

 

 

 

で、破壊の働きをする「異常タンパク質分解酵素」というのがあります。

 

 

 

『Dr.GOTOの老化研究所 05-異常たんぱく質はなぜ増えるのか?』より引用

 

 

 

 

異常タンパク質蓄積の原因:タンパク質代謝回転の低下

 

 

タンパク質分解酵素というと胃のペプシンや腸のトリプシンなどがよく知られていますが、いずれも細胞外に分泌される消化酵素です。

 

 

細胞内にも、カテプシン・プロテアソーム・カルパインなど何種類ものタンパク質分解酵素が存在します。

 

 

このうち主要な異常タンパク質分解酵素であるプロテアソームの活性は、老齢動物で低下します(図24-2)。

 

 

他のタンパク質分解酵素は、活性があまり変わらないか、逆に増えるものもあります。

 

私たちの研究室では老齢動物のプロテアソームの活性を阻害すると異常タンパク質の分解も抑えられることを明らかにしています。

 

 

興味深いことにプロテア ソームの活性低下は、酵素の量が減ったためではなく、酵素自身が異常化しているためのようです。

 

 

異常タンパク質を分解除去する酵素自身が異常化すれば、他の異常タンパク質の分解が遅くなってしまうのはうなずけます。

 

 

 

このように、「プロテアソーム」というタンパク質分解酵素が、「異常タンパク質」を分解します。

 

 

 

この働きが低下すれば、破壊されるはずの異常タンパク質が破壊されません。

 

 

 

働きが低下する理由は、タンパク質分解酵素が異常化することなので、その理由を考えてみます。

 

 

 

まず、酵素はタンパク質で出来ています。

 

 

 

その為、タンパク質不足や、糖化に弱いです。

 

 

 

例えば、タンパク質不足の人が肉を食べると気持ち悪くなります。

 

 

 

タンパク質や脂質を消化する消化酵素もタンパク質でできているので、タンパク質不足で酵素が不足し、肉を上手く消化できなくなります。

 

 

 

 

タンパク質不足

 

 

消化酵素が不足

 

 

タンパク質を食べてもうまく消化できない

 

 

タンパク質を食べなくなる

 

 

タンパク質不足

 

 

 

 

 

この場合、「タンパク質不足が悪い」とは思わず、「タンパク質が悪い」と勘違いする人が多いです。

 

 

 

 

理屈は同じで、タンパク質不足だと「タンパク質分解酵素」も不足します。

 

 

 

『藤川徳美医師 facebook 2018年1月31日』より引用

 

 

メグビーメールマガジン 2月号 Vol.95、より

 

 

第9章 ~高タンパク食生活の心得も~ -日常生活を例に正しい処方を表示-

 

 

【その不足は全身に悪影響】

 

 

まず、タンパク質の生体における役割を見よう。

 

血液、骨、筋肉、神経、内臓諸器官から皮膚や爪にいたるまで、タンパク質でできていないものはない。

 

 

したがって、それの欠乏があれば、全身的に悪影響が及ぶ。

 

 

生体の代謝をにぎる酵素がすべてタンパク質であることも見のがせない重要なポイントである。タンパク質の欠乏があれば、代謝のスムーズな進行は期待できないといって、過言ではない。

 

 

そしてまたタンパク質は、抗体やインターフェロンなど、感染に対する自衛手段にも利用される。タンパク質が欠乏すれば、細菌やウイルスに対して無防備になるのだ。
生体の代謝には、タンパク質も、糖質も、脂質も参加する。

 

 

それらのすべてが酵素を要求することを考えると、タンパク質の比率が低くては、代謝のスムーズな進行にさしつかえる、という結論をださざるをえなくなる。

 

 

エネルギー源が、糖質・脂質だからといって、これだけを食っていたら、エネルギーさえもつくれない。

 

 

酵素タンパクなしの代謝などは、ありえないからである。

 

 

タンパク質の比率が重要なことは、このような極限のケースを想像すればわかるはずだ。

 

 

 

もっと最悪なのは、タンパク質不足だと古いアミノ酸を使いまわして「代謝回転」が行なわれることです。

 

 

健康の維持には、体の材料であるタンパク質を必要なだけ常に補う必要があります。

 

 

先ほども言ったように、生体はタンパク質を分解したり合成したりを繰り返しています。

 

 

その過程で「古くなったアミノ酸」は捨てられるのですが、タンパク質が不足している人は、古いアミノ酸を再利用します。

 

 

 

『藤川徳美医師 facebook 2017年5月28日』より引用

 

 

タンパク質は作って(同化)は壊して(異化)を繰り返しており、動的平衡状態にある。

 

 

原料が足りないと、三石先生風に言うと、粗末な腎臓、粗末な肝臓、粗末な心臓、粗末な脳、ができてしまう。

 

 

脂質は、細胞膜、ミトコンドリア膜、核膜などの生体膜成分。

 

このものも、同化と異化による動的平衡状態にある。

 

 

体を作る代謝酵素の主酵素はタンパク質。

 

 

代謝酵素の補酵素はビタミン、ミネラル。

 

 

糖質ばかり食べると、体に悪いのは明白。

 

 

小学生でもわかる栄養の話。

 

 

 

タンパク質不足は、粗末な体を作り上げてしまうので、ガラクタのようになります。

 

 

 

古いアミノ酸は変形していることもあるので、そんな材料を使って体を作った場合、下手をすると体の防衛軍である「免疫細胞」に敵とみなされて攻撃されてしまいます。

 

 

 

これが「自己免疫疾患」の原因です。

 

 

詳しくは以下の記事に書いています。

 

 

炎症と自己免疫疾患について分かりやすく説明してみた

 

 

 

タンパク質不足だと、「必要な物が作れない」こともあれば、「廃材を使いまわすことによって粗末な体になってしまう」リスクがあります。

 

 

 

だから、タンパク質は不足させてはいけないのです。

 

 

 

健康維持の為には最低でも体重1kgあたり1gは必要です。体重50kgの人だと50gは必要ということになります。

 

 

病気の改善や美容目的の場合は、さらに量が必要です。

 

 

 

スポンサーリンク

 

 

 

ケトン食と神経変性疾患

 

 

 

神経細胞を糖化させない為に糖質を制限すること、

 

 

そして、異常タンパク質分解酵素の働きを低下させない為にタンパク質を十分摂取することが大事・・・という話をしてきました。

 

 

 

高タンパク質、低糖質です。

 

 

 

そして、もう一つ付け加えたいのが脂質です。

 

 

 

『がんの漢方治療と補完・代替医療 銀座東京クリニック 筋萎縮性側索硬化症(ALS)の代替療法』より引用

 

 

【肥満の方が生存期間が長い】

 

 

ALSでは栄養状態が良いほど生存期間が長いことが明らかになっています。

 

 

ALSの動物実験モデルを使った実験では、高脂肪食で運動ニューロンの死滅が減少し、生存期間が20%延長したという報告があります。

 

 

高脂肪食(脂肪47%、炭水化物38%、たんぱく質15%)と普通食(脂肪17%、炭水化物64%、たんぱく質15%)の比較では、普通食の生存期間が180日以下に対して高脂肪食では220日(一部のマウスは270日以上生存)という結果が報告されています。

 

 

BMI(body mass index)とALS患者の生存期間が比例するという報告があります。

 

 

100万人以上を14〜28年間追跡して前向き試験では、標準体重の人より肥満の人の方がALSを発症するリスクは30〜40%低いという結果が報告されています。

 

 

結論的には、少し肥満になるくらいにカロリーオーバーの食事がALSの生存期間を延ばす効果が期待できるということです。

 

 

 

効果が期待できる代替療法として注目されているのが「ケトン食」です。

 

 

 

「ケトン食」とは、摂取エネルギーの60~90%を脂肪で摂る食事法です。脂肪酸を分解して生じたケトン体をエネルギー源として利用します。糖質は極端に減らすという特徴があります。

 

 

 

ケトン食は「アルツハイマー病」に効果があったという話が多いのですが、「筋萎縮性側索硬化症」にも効果があることが報告されています。

 

 

 

場所が違っても神経細胞が死ぬという本質は同じなのです。

 

 

 

では、何故「ケトン食」が神経細胞に良い影響をもたらすのか、その理由です。

 

 

 

『がんの漢方治療と補完・代替医療 銀座東京クリニック 神経変性疾患とケトン食』より引用

 

 

ケトン体はグルコースが枯渇したときに肝臓で脂肪酸が燃焼して産生されます。

 

 

 

ケトン体は血液脳関門を通過し、拡散あるいはモノカルボン酸トランスポーターによって神経細胞内に入り、神経細胞のエネルギー源となります。

 

 

 

グルコースの代替エネルギー源となる以外に、次のような様々なメカニズムで神経細胞を傷害から守る作用があります。

 

 

 

①ケトン体は神経細胞のミトコンドリアを増やし、ケトン体自体がエネルギー源となって神経細胞におけるエネルギー産生を増やす。

 

 

 

②ケトン体は抗炎症作用があり、さらにミトコンドリアにおける活性酸素の産生を減らし酸化障害を軽減する。

 

 

 

③ケトン体はアポトーシスの過程を阻害することによって神経細胞死を抑制する。

 

 

 

④ケトン体はヒストンアセチル化を亢進して認知機能を高める。

 

 

 

ミトコンドリアというのは、細胞内にある発電所です。

 

 

 

ミトコンドリアを使うと、エネルギー物質「ATP」をたくさん作ることができます。

 

 

 

 

 

 

ミトコンドリアが機能不全になることで、細胞が癌化します。

 

 

一方、神経細胞(ニューロン)は、ミトコンドリアの多い細胞です。

 

 

 

 

 

 

普通の細胞のように分裂しないので癌化することはありませんが、再生しないのでダメージを受けて変性したり死滅すると数が減ります。

 

 

 

脳腫瘍は「神経細胞(ニューロン)」が癌化したのではなく、「グリア細胞」が癌化したものです。

 

「脳のエネルギー源はブドウ糖なので糖質をしっかり摂りましょう」と言う人が語らない話

 

 

 

神経変性疾患もミトコンドリアの機能が低下することが影響しているようです。

 

 

 

『がんの漢方治療と補完・代替医療 銀座東京クリニック 筋萎縮性側索硬化症(ALS)の代替療法』より引用

 

 

 

ALS患者やALSの動物実験モデルの研究から、ALSの発症とその進展の機序にエネルギー代謝の異常が関与していることを示すエビデンスが増えている。

 

 

特に、糖代謝の低下とミトコンドリア機能の異常が中枢神経系組織や筋肉組織のATPの利用を妨げている。

 

 

ALSにおけるミトコンドリア機能の改善を目標にした代謝治療が幾つか試みられており、ALSの機能改善に様々な効果を示している。

 

 

ALSの実験モデルにおいて代謝をターゲットにした治療の効果は、運動障害の発症を遅らせ、運動神経を保護し、生存期間を延長することが明らかになっており、ALSの発症メカニズムに代謝の異常が重要な関与をしていることを示している。

 

 

ALSに対する代謝治療の有効性を検証する比較対照臨床試験を早急に実施する必要がある。

 

 

さらに、ALS患者やALSの動物実験モデルにおけるエネルギー代謝の異常を解明することは、代謝をターゲットにした有効な治療法の開発に必要であり、このような治療法はALSの進行を遅らせ、ALS患者の延命につながる。

 

 

 

神経細胞のエネルギー源はグルコース(ブドウ糖)ですが、ALSの運動ニューロンではグルコースの取込みも代謝も低下し、ミトコンドリアでのATP産生が低下してエネルギー不足になって細胞死が引き起こされているので、ミトコンドリアの働きを高める方法はALSの進行を抑制できるという考えです。

 

 

がん細胞では、解糖系が亢進しミトコンドリアでの酸化的リン酸化が抑制されています。この場合、ミトコンドリアの機能を亢進するとがん細胞は自滅します。

 

 

一方、神経変性疾患では、ミトコンドリアの働きが低下してATP産生が低下して死滅するので、ミトコンドリアの働きを亢進すると、神経細胞死を避けることができるということです。

 

 

 

これを読むと、ミトコンドリアの機能を回復してATPをたくさん作る栄養療法が応用できそうです。

 

 

 

 

神経変性疾患の対策

 

 

筋萎縮性側索硬化症は、他の神経変性疾患の対策と同じように、

 

 

 

糖質を減らし、タンパク質と脂質を摂る糖質制限と、エネルギー代謝を円滑にする為に必要なビタミンやミネラルをサプリメントで必要なだけ摂るのが効果的でしょう。

 

 

 

実際にやってみないと分かりませんが、そういう方法も知っておいた方がいいです。

 

 

 

 

ATP(アデノシン三リン酸)について分かりやすく説明してみた

 

 

エネルギー代謝について分かりやすく説明してみた

 

 

癌細胞と癌家系について分かりやすく説明してみた

 

 

ベジタリアンや糖質を止められない人が、健康の為に摂っておきたい栄養素とは

 

 

 

スポンサーリンク

 

 

筋萎縮症という難病の原因と根本的な治療法について考えてみた

筋肉が萎縮し、運動機能が失われる病気を総称して「筋萎縮症 きんいしゅくしょう」と言います。

 

 

 

筋肉自体が徐々に小さくなる難病で、根本的な治療法は発見されていません。

 

 

何故、そんな疾患について書くかというと、私の身内の友人がこの疾患にかかっているからです。

 

 

その人は30代の男性で、私より歳下です。彼が最初に病院に行った時、私の身内も付き添いで行ったので、その時から気になっていました。

 

 

 

まさか難病とは…。

 

 

 

私の友人ではないので、私が口をはさむ問題ではないのですが、無視はできません。

 

 

 

 

情報を世の中に向けて発信する形で助けられないかな・・・と考えています。

 

 

 

以前から「筋萎縮症」を改善する方法や、完治したという情報はないかとアンテナを張っているのですが、決定的な情報はまだ掴んでいません。

 

 

 

 

ただ、以下の記事にも書きましたが、原因不明だと言われている慢性疾患は「質的な栄養失調」を改善させることによって完治するという事例がでてきました。

 

 

神経難病である多発性硬化症(MS)が半年でほぼ完治した治療法

 

 

 

なので、「筋萎縮症」も治る可能性があると期待しています。物事の道理からして、原因がないはずはないからです。

 

 

 

なので、断片的ではありますが、改善のヒントになりそうな情報をまとめておきます。

 

 

スポンサーリンク

 

 

 

筋萎縮症の種類

 

 

 

 

実は、「筋肉が萎縮する病気」・・・というのだけは覚えているのですが、正式な病名を聞いた記憶がないので、その人がどの萎縮のタイプなのかは分かりません。

 

 

 

確か「筋萎縮性側索硬化症」だったと思うのですが、筋力が低下していく疾患はいくつもあるので、何だったかな・・・と。

 

 

 

 

「筋萎縮症」は、大きく種類に分けられます。

 

 

 

  • 神経に問題がある・・・神経原性筋萎縮(neuropathy ニューロパチー)

 

 

  • 筋肉自体に問題がある・・・筋原性筋萎縮(myopathy ミオパチー)

 

 

 

 

ちなみに、病気などで筋肉を長い間使わない状態が続いて機能が低下する事は「不働性筋萎縮(廃用性萎縮)」と言います。

 

 

 

違いを説明します。

 

 

 

 

神経系は「中枢神経系 ちゅうすうしんけいけい」と、「末梢神経系 まっしょうしんけいけい」に分けられます。

 

 

 

筋肉は「末梢神経系」の「運動神経」に支配されています。

 

 

 

 

 

 

 

 

手足を動かす時、脳からの命令が「運動神経」を伝わって手足の筋肉へと伝わります。

 

 

 

 

 

 

運動神経

 

 

筋肉

 

 

 

 

神経と筋肉が接している部分を「神経筋接合部 しんけいきんせつごうぶ」と呼びます。

 

 

 

このようなメカニズムなので、筋肉の病気は、「筋肉自体がダメージを受ける」ことで起こることもあれば、「神経がダメージを受ける事によって、二次的に筋肉に影響がでる」こともあるのです。

 

 

 

筋肉だけが正常でもダメ、神経だけが正常でもダメなのです。

 

 

従って、原因別に以下のように分けられます。

 

 

 

神経に問題がある(神経原性筋萎縮)

 

 

 

筋萎縮性側索硬化症(ALS)、脊髄性筋萎縮症(SMA)、球脊髄性筋萎縮症…等

 

 

 

 

筋肉自体に問題がある(筋原性筋萎縮)

 

 

 

筋ジストロフィー、多発筋炎、遠位型ミオパチー、皮膚筋炎…等

 

 

 

 

スポンサーリンク

 

 

 

 

筋萎縮性側索硬化症(ALS)とは

 

 

たぶん、この病気だった…と思うので、ここからは、神経難病の「筋萎縮性側索硬化症(ALS)」の話をします。

 

 

 

「筋萎縮性側索硬化症 きんいしゅくせい そくさく こうかしょう」。

 

 

 

  • 側索・・・脊髄の側面のことで、脳から末梢へと続く運動神経の通り道。

 

 

  • 硬化・・・壊れたあとが硬くなる状態。

 

 

 

英語で、Amyotrophic Lateral Sclerosis(アミオトロフィック・ラテラル・スクレローシス)といいます。

 

 

 

この「筋萎縮性側索硬化症(ALS)」の別名は、「運動ニューロン病」です。

 

 

 

 

筋肉に指令を送る運動神経細胞(運動ニューロン)が変性し、結果的に筋肉に障害が起こります。

 

 

 

 

自分の思い通りに体を動かす筋肉を「随意筋 ずいいきん」と言います。そして、「随意筋」を支配する神経が「運動神経細胞(運動ニューロン)」です。

 

 

 

心臓や胃や腸などは、自分の意志で動かしているわけではないので「随意筋」ではありません。「自律神経」が支配している「不随意筋」です。

 

 

 

「筋萎縮性側索硬化症(ALS)」は、「運動ニューロン」は破壊されるのですが、「自律神経系」は破壊されません。

 

 

 

そして、「体性神経系」の「感覚(知覚)神経」も破壊されません。

 

 

 

つまり、こういうことです。

 

 

 

 

  • 運動神経(発信)・・・障害

 

  • 感覚神経(受信)・・・問題ない

 

 

 

 

殴られた時に「痛い」と感じるのが、受信である「感覚(知覚)神経」の働きです。

 

 

それに対して、殴られた時に防御するのは、発信である「運動神経」の働きです。

 

 

 

「筋萎縮性側索硬化症」になると、殴られた時、痛みを感じることはできますが、体を動かして防御する事ができなくなります。

 

 

 

なので最終的に、思考や感覚はそのままで、全身の筋肉が麻痺し寝たきりなります。

 

 

 

2~5年後に呼吸筋が麻痺して人工呼吸器を使うことになります。

 

 

 

 

心臓や消化器官と違って、呼吸は、無意識に動かす自律的な運動と、意識的に動かす随意的な運動の2つで成り立っています。

 

 

 

 

 

運動ニューロン(運動神経細胞)の疾患

 

 

 

 

「運動神経細胞(ニューロン)」は、2つに分けられます。

 

 

 

  • 上位運動ニューロン

 

  • 下位運動ニューロン

 

 

 

そして、どのニューロンがダメージを受けるかによって病名が違います。

 

 

 

  • 上位だけ・・・原発性側索硬化症

 

  • 下位だけ・・・脊髄性筋萎縮性等

 

  • 上位と下位両方・・・筋萎縮性側索硬化症

 

 

 

 

筋萎縮性側索硬化症のような、神経が死んでいく疾患を「神経変性疾患 しんけいへんせいしっかん」と言います。

 

 

 

では何故神経が死ぬのか・・・その理由を栄養の視点から考えてみたいと思います。

 

 

 

栄養に問題があって病気になる場合、「必要な栄養」が極端に不足してたり、「不要な栄養」が過剰だったりします。

 

 

 

何が不足していて、何が過剰なのか見つけるのは大変ですが、以下の2つが考えられます。

 

 

 

  • 極端にミネラルが少ない

 

  • 糖質が多い

 

 

 

スポンサーリンク

 

 

 

 

 

牟婁病の原因は水に含まれているミネラル

 

 

 

日本の紀伊半島に「筋萎縮性側索硬化症」の多発地域の一つがあります。

 

 

 

昔から「牟婁病(むろびょう)」と呼ばれていました。最古の記録は1689年だそうです。

 

 

他の地域に比べて発生率が50~150倍だそうです。

 

 

 

 

『難病情報センター 神経系疾患分野 牟婁病:筋萎縮性側索硬化症 ( むろびょう:きんいしゅくせいそくさくこうかしょう ) /パーキンソン認知症複合(ALS/PDC)(平成22年度)』より引用

 

 

 

1. 概要

 

紀伊半島南部とグアム島は、筋萎縮性側索硬化症 (ALS) の世界的な多発地域として知られている。

 

 

これらの地域には、パーキンソニズムと認知症を主症状とする特異な神経変性疾患であるパーキンソン認知症複合 (parkinsonism-dementia complex、PDC) が多発している。

 

 

ALSとPDCは、密接な関連があり、同一疾患の異なる表現型と考えられ、両者はまとめて牟婁病 (ALS/PDC) と呼称される。

 

 

 

2. 疫学

 

数十人~100人程度。

 

 

 

3. 原因

 

これまでに、遺伝説、環境因説 (微量ミネラル/重金属説、ソテツに含まれる神経毒)、ウイルス説などが提唱されたが、確立したものはない。

 

 

牟婁病の中枢神経系には、異常にリン酸化され たタウ蛋白が多量に蓄積しており、神経細胞死との関連が推察されている。

 

 

また、近年、前頭側頭型脳葉変性症と筋萎縮性側索硬化症で同定されたTDP-43 とパーキンソン病に出現するα-synuclein の蓄積も認めら、複合蛋白質蓄積病のひとつと考えられる。

 

 

家族内発症が多いことから、環境要因と遺伝要因の複合作用によって発症するものと考えられる。

 

 

 

牟婁病の特徴で気になったのは、以下の2点です。

 

 

 

  • 「筋萎縮性側索硬化症 (ALS)」 と「パーキンソン認知症複合 (parkinsonism-dementia complex)」は密接な関連があり、同一疾患の異なる表現型と考えられる

 

 

  • 牟婁病の中枢神経系には、異常にリン酸化された「タウ蛋白」が多量に蓄積している

 

 

 

「筋萎縮性側索硬化症」の治療法は少ないですが、「認知症」や「パーキンソン病」の治療法は比較的よく見つかります。

 

 

 

同一疾患の異なる表現型なら、「認知症」や「パーキンソン病」の治療法が応用できる可能性があります。

 

 

 

『現代ビジネス 「認知症多発の村」の衝撃!〜江戸時代から解明されていない奇病の秘密と謎』より引用

 

 

「『何でなんや』とは思うけど、私たち素人にはどうしようもない。前兆もないんです。『もしかしたら、自分も(病気になるのではないか)』という気持ちはあります。患者が出るたびに、『次は自分かな』と」(前出の男性)

 

 

(中略)

 

 

この地域にみられる特殊な病気は、正しくは「紀伊ALS/PDC」と呼ばれる。

 

 

「ALS」とは「筋萎縮性側索硬化症」、そして「PDC」とは「パーキンソン・認知症複合」の意味。

 

 

つまり、紀伊半島の一部でしかみられない、ALSとパーキンソン病・認知症が合わさった、不可解な病気ということである。

 

 

 

ALSの発症率は10万人に1人、パーキンソン病の発症率は1000人に1人だそうです。

 

 

小さな村で患者が多発するのは普通ではありません。

 

 

 

そして、多発する原因にが考えられます。

 

 

 

酸性土のため、カルシウムやマグネシウム等のミネラルがほとんど含まれていない水で、アルミニウムやマンガンが多く含まれているそうです。

 

 

 

『Wikipedia 風土病』より引用

 

 

和歌山県の紀南地方では、かつて水が原因で発生するとされる風土病(筋萎縮性側索硬化症(ALSまたはアミトロ)、現地では地名から「牟婁病」(むろびょう)とも称する)が発生していた。

 

 

多雨で強い酸性土壌、この地域を流れる水(古座川など)のミネラル成分(カルシウムやマグネシウム)が極端に少ない上アルミニウムやマンガンなどの成分が多く、これを常飲するばかりでなく、交通網に乏しく陸の孤島であった同地域においてはこれらの水から育てた作物のみを食料にしていたことが原因と考えられる。

 

 

 

ここを調べた和歌山県立医科大学のグループは、古座川の水が水晶のように澄んでいたことに驚いたそうです。

 

 

 

魚の姿も見られなかったそうです。

 

 

 

それは極端にミネラルが少ない蒸留水、純水に近い水ということになります。

 

 

 

純水・・・と聞くと良いような気がしますが、実は体には悪いです。

 

 

 

『水博士 小羽田健雄の水で健康をつくるブログ 浄水器と水』より引用

 

 

H2Oだけの生成装置”があります。

 

 

大学教授、医師、研究機関、理科系の人を含め、多くの人が“問題のない良い水で、私も飲みます”と言い、危険性を否定しています。

 

 

純水は、原発の冷却材、素粒子検出液、注射用の液、遺伝子の細胞培養、精密機械・液晶・半導体の洗浄には欠かせません。

 

 

かといって、人が飲んでも即座に何かが反応するわけではありません。ましてや量が少ないと何の反応も出ません。だから、様々な人が純水をお薦めするのでしょう。

 

 

食事で様々なものを補給しているので全く体に影響はないといわれ、学者もお医者さんもきれいな水としてお勧めです。

 

 

「赤ちゃんの水」

 

 

ここまでくると、黙っていられません。

 

 

長い時代をかけて、純水は人に悪い影響を与えることが分かっています。賛成派の人たちは長い歴史を無視し、今の自分が中心です。

 

 

長期間航海する船や宇宙船では、純水に必ずミネラル成分を添加して飲用します。

 

 

純水を飲み水で利用して良いなら、海の上です。海水が蒸発してミネラル成分を含まない水が空からたっぷり降り注ぎます。ほとんど純水。

 

 

ところが、この水を飲んで多くの船乗りが体に異変を生じ、長い経験の後に雨水を飲む危険性を言い伝え、寄港する港でわざわざ綺麗でない陸の水を積み込んだのです。

 

 

現代社会で純水を勧める人は、自分のわずかな体験で皆さんを指導しています。

 

 

和歌山県の牟婁地区で発生した牟婁病も、小さい頃は飲み続けても何も起きなかったのですが、成人前後になって病気が発生。

 

 

飲んでいた人全員ではないのでその人数を切り捨てればいいのでしょうが、赤ちゃんに飲ませ続けて成人近くなった時病気が発生したら、あまりにも悲しい出来事です。

 

 

誰が何といおうと、純水は飲み水ではない!

 

 

 

 

昔は、地元の水を飲み、地元の水で育った食物を食べていたので、その水がミネラル不足だった場合、摂取した人がミネラル不足になります。

 

 

これは病気の原因です。

 

 

しかし、これを否定する説もあります。

 

 

食生活が変わったことで、80年代に入ってから患者が減ったのですが、90年代以降に再び患者が増えたからです。

 

 

その為、「水」や「水で育った食物」が原因ではないとも言われています。

 

 

 

また、以下のような理由から、遺伝病ではないかという説があります。

 

 

 

  • この地域に生まれた人が別の地域に引っ越して何年も経った後に発病する

 

  • 8割の患者の家族にも患者がいる

 

 

 

しかし、こちらも否定する説があります。

 

 

『現代ビジネス 「認知症多発の村」の衝撃!〜江戸時代から解明されていない奇病の秘密と謎』より引用

 

 

「普通は、ある地域で病気が多発する場合、必ず多くの患者に共通の原因遺伝子が見つかるものですが、『紀伊ALS/PDC』ではいまだに見つかっていません。つまり、患者全員が同じ原因遺伝子を持っている、というわけではないのです。また、『他の地域で生まれた人が、この地域に移住してきて発病する』というケースも、数は少ないですが存在します。こうした例は、遺伝だけでは説明がつきません」

 

 

環境でもなく、遺伝でもない。しかし、そこでは確かに認知症が「多発」する。この医学史上まれに見るミステリーは、今も人々を悩ませている。前出の男性住民が言う。

 

 

「村には、この病気にかからず100歳近くまで長生きする人もいます。でも、その人のお子さんは病気になったりする。やっぱり、われわれ住民には『解決してほしい』という思いがあります。私の家族や親戚にも、病気になって、あっという間に死んでいったのがようけおりますから」

 

 

 

家族に同じ疾患を抱えた人が出ると「遺伝病」という発想になりますが、

 

 

 

単純に体質的に弱点が同じだから、特定の条件の元では同じ病気になりやすいとも考えられます。

 

 

 

「同じダメージに弱い」だけで、そのダメージがなければ影響を受けにくいです。

 

 

 

 

例えば、癌家系の人は、ある酵素の形が先天的に悪いです。

 

 

 

その為、糖質の過剰摂取をすると、代謝しきれず「乳酸」を蓄積させてしまいます。それが血液を酸性にし、ミトコンドリア機能不全を招き、最終的に細胞が癌化する・・・というプロセスをたどります。

 

 

ですが、先天的に酵素の形が良い人は、同じように糖質を過剰摂取しても、代謝しきることができるので乳酸が蓄積しません。

 

 

癌家系の人は、糖質を過剰摂取しない環境を作ったり、酵素をサポートするビタミンを大量に摂る事でダメージを受けにくくすることが可能です。

 

 

 

癌については以下の記事で説明しています。

 

癌細胞と癌家系について分かりやすく説明してみた

 

 

 

弱点は人によって違います。弱点の違いが、症状の違いとなって表れます。

 

 

 

私は、他の地域から引っ越してきた人が「筋萎縮性側索硬化症」を発症するあたり、環境が大きいと考えています。環境とは以下です。

 

 

 

  • カルシウムやマグネシウムが欠乏する

 

  • アルミニウムやマンガンが多い

 

 

 

・・・このダメージに弱い人が、この地域の水で生活すると発病するだけなのかもしれません。

 

 

 

「マンガン」はともかく「アルミニウム」が多いのはいただけません。

 

 

『藤川徳美医師 facebook 2017年5月25日』より引用

 

 

23、脳の老化(その2)

 

Abram Hoffer:Orthomolecular Medicine For Everyone、より

 

 

アルツハイマーと重金属蓄積

 

 

カール・ファイファーは、アルツハイマーには重金属毒が蓄積していると言った。

 

つまり、アルミニウム、銅、鉛、水銀、カドミウム、銀。

 

アルミニウムは神経毒であり、アルツハイマー、パーキンソン病、筋萎縮性側索硬化症(ALS)を引き起こす。

 

 

銅に暴露される職業の人は、通常の3~4倍アルツハイマーになりやすい。

 

 

CaとMgはアルミニウム吸収を抑制する。

 

 

 

「アルミニウム」が多くて、その吸収を抑制する「カルシウム」と「マグネシウム」が少ない水・・・

 

 

 

長期間この影響を受けると、皮膚の状態が変化したり、中枢神経にあるはずのないものが沈着したりするそうです。

 

 

 

『LIVE TODAY TOMORROW 低含有のカルシウム、マグネシウム、高含有のアルミニウムの食事を慢性的に摂取したマウスでは筋萎縮性側索硬化症(ALS)と同様の皮膚の病変が認められる』より引用

 

 

ALS患者の臨床特徴として末期に至るまで褥瘡が起こらないこと、皮膚をつまんで離しても元の位置に戻るまで時間のかかる現象(皮膚のつまみ現象)が知られている。

 

 

これまでのALS患者の皮膚の形態学的研究は膠原線維の小径化、無定形物質の沈着などを明らかにしており、これらの変化はALSに特異的と考えられている。

 

 

1945年と1960年におこなわれた調査では紀伊半島とGuam島ではALSの有病率は他地域に比較して50-150倍も高いことが明らかになった。

 

 

紀伊半島古座川地区およびGuam島の疫学的研究はこれらの地域の土壌および飲料水には低濃度のCa, Mg、高濃度のAl, Mnが含まれていることを示している。

 

 

これまでの研究よりALS患者の脳および脊髄ではCa, Mgの沈着が明らかになっている。

 

 

AlはGuam島、紀伊半島のALS患者の脳で認められるneurofibrillary tangle(NFTs)に存在することが知られている。

 

 

これらの所見より、低濃度のCa, Mg、高濃度のAlを含む食事を慢性的に摂取すると、中枢神経にAl, Caの沈着を引き起こし、このことは紀伊半島、Guam島のALSの神経変性に重要な役割を果たしていることが推測される。

 

 

これまでの研究において長期間低含有のCa, Mg、高含有のAlの食事を与えられた実験動物では、脊髄前角細胞と大脳皮質の神経細胞減少および大脳皮質におけるタウ陽性ニューロンの出現が報告されている。

 

 

 

 

スポンサーリンク

 

 

 

神経変性疾患の特徴と原因

 

 

 

牟婁病、つまり、筋萎縮性側索硬化症、パーキンソン病、認知症・・・

 

 

 

 

これらはどれも神経細胞が死んでいく「神経変性疾患」ですが、「パーキンソン病」や「認知症」に比べると、「筋萎縮性側索硬化症」の情報はあまり見つかりません。数が少ないからでしょう。

 

 

 

なので、たくさん情報が得られる「パーキンソン病」や「認知症」から、「神経変性疾患」の原因を考えてみます。

 

 

 

 

「別の病気だろ」と突っ込まれるかもしれませんが、癌の時もそうでした。「乳酸」という1つの原因で、癌、糖尿病、脚気・・・と様々な病気になります。

 

 

 

表れる症状は違っても、本質は同じだったりするのです。

 

 

 

 

『ガンの特効薬はミトコンドリア賦活剤 ミトコンドリア異常(低酸素・血液のpH7.3以下)で人は病気になり死ぬ』より引用

 

 

ブドウ糖をエネルギーに変えられなくて、乳酸に変えてしまっている人は、乳酸アシドーシスという体質になっているのです。

 

 

ガンも糖尿病も腎不全も肝不全も脚気も重症感染症もてんかんも薬害も、すべてタイプBの乳酸アシドーシスです。

 

 

乳酸アシドーシスになるからガンや糖尿病になり、ガンや糖尿病になるから乳酸アシドーシスになります。

 

 

医学界の都合で様々な病名が付けられていますが、基本的には「ミトコンドリア病による乳酸アシドーシス」なのです。乳酸アシドーシスを改善すると様々な病気が治るのは、基本的には同じだからです。

 

 

メトホルミンやベンフォチアミンやジクロロ酢酸や水素やテラヘルツ波が万能薬として重宝されるのは、現代病の基本が同じであり、ダブついた乳酸の代謝や還元が重要なのです。

 

 

 

 

だから、「神経変性疾患」も本質をみたいと思います。

 

 

 

ちなみに、認知症は「神経変性疾患」の他に、脳の血管の病気である「脳血管性認知症」、「その他原因」があります。

 

 

そして、「神経変性疾患」が原因の認知症は3タイプです。

 

 

  • アルツハイマー型

 

 

 

  • レビー小体型

 

 

 

  • 前頭側頭型

 

 

 

 

 

 

 

 

筋萎縮性側索硬化症やアルツハイマー病等の神経変性疾患に栄養療法が効果的な理由へ続く

 

 

 

スポンサーリンク

 

 

神経難病である多発性硬化症(MS)が半年でほぼ完治した治療法

 

「多発性硬化症 たはつせいこうかしょう」とは、神経系に起こる病気で、

 

 

 

国の指定難病の一つです。

 

 

 

しかし最近、この疾患が治ったという報告がありました。

 

 

 

 

「オーソモレキュラー」という栄養療法でです。

 

 

 

 

日本ではあまり知られていない疾患なので、普通の人はピンとこないと思いますが、結構凄い事らしいです。

 

 

 

 

私も名前は聞いたことがあるのですが、周囲にこの病気の人がいないので、具体的にどんな病気なのかは知りませんでした。

 

 

 

 

興味を持って調べたら、難病と言われるだけあって、かなり厄介な病気です。この疾患にかかっている人には早く知っていただきたいので、この情報を広げたいと考えています。

 

 

 

 

2016年末に、水も飲めない末期癌患者が歩いて帰った・・・という治療法が公開されて1年以上経ちましたが、いまだに多くの人はこの話を知りません。

 

 

 

 

 

 

積極的に情報を集める人だけが知っている・・・という状態です。

 

 

 

従って、この治療法もおそらく表にはでないでしょう。

 

 

 

 

放っておいたら、この多発性硬化症を根本的に解決する方法も、数年先も「原因は分かっていません」・・・等と、白を切り続ける可能性なので、ここで宣伝しておきます。

 

 

 

この疾患にかかっていない人にとっても、このような難病が治るような方法は、病気の予防をする上で参考になります。

 

 

 

まず、ほぼ完治した・・・という実話を読んで下さい。

 

 

 

『藤川徳美医師 facebook 1月24日』より引用

 

 

症例:30代男性

 

 

H26.7、脱力で歩けなくなった。手も脱力あり。足が攣る。

 

公立病院神経内科でMSと診断される。

 

治療は、インターフェロンβ筋注。

 

H29.5、FB記事を見て当院を受診。

 

元々糖質過多の食生活だったが、H29.3より高タンパク/低糖質食を始めた。(発病前の糖質過剰摂取は凄かったと、奥様より)

 

172cm、元々95kg合ったのが77kgになった。

 

食事を変えて、体調が良くなった。

 

フェリチン78。

 

ナイアシン、B50、C、E、のメガビタミンを開始。

 

D、Fe、Znなども追加。

 

薬は処方していないので、3ヶ月毎に通院し、フェリチン、ケトン体を測定。

 

H30.1、体調はすこぶる良好で、脱力症状は全くなく、足も攣らなくなった。

 

75kg。

 

BUN26.5、フェリチン127。

 

ケトン体0.3

 

食事とサプリメント;

 

タンパク質、プロテインスコアで150g(体重*2)、

 

プロテイン30g*3、卵3個、肉300g、

 

糖質は1食5g程度。

 

B50*3、

 

ナイアシン500mg*4、

 

C1000、3*3、

 

E、2000IU、

 

D、10000IU、

 

Fe、27mg*2、

 

Zn、30mg、

 

Mg、400mg、

 

Se、200mcg、

 

ーーーーーーーーーーーーーーーーーーーーー

 

難病で治療法がないとされているMSが約半年でほぼ完治。

 

1950年代にこの治療でMSが完治したことがカナダの新聞に掲載されたとオーソモレキュラー本に書いてあった。

 

日本で完治したのは初めてだと思う。

 

 

MSに限らず他の神経難病、膠原病、他の慢性疾患もこの治療を行えば改善に向かうはず。

 

本患者はとても勉強されており、こちらが驚くほど知識が凄い。

 

”MSに限らず全ての慢性疾患はこの治療で治る”と自信を持って言われる。

 

自分で勉強して自分で治してしまった。

 

まさに、「健康自主管理」、「doctor yourself」、だね。

 

(Aも追加した方が良いと思う。)

 

 

男性なのに初診時のフェリチン78は長期間の最重度のタンパク不足。

 

これだけやってもケトン体がなかなか増えないのは謎。

 

可能性として、

 

1)鉄がまだ足りていなく電子伝達系の機能低下、

 

2)B群の確率的親和力が低くてまだ足りておらず、クエン酸回路の機能低下、

 

3)Cによるカルニチン合成能力への確率的親和力が低く、脂肪酸利用効率が悪い。

 

さらなるフェリチン上昇、B50の増量、アセチル-L-カルニチン追加が良いかもしれない。

 

若くしてMSを発症したのは上記のような、体質的弱点があるのかもしれない。

 

しかし、体質的弱点はメガビタミンで克服可能だと確信している。

 

 

これだけ読むと、簡単に治ってしまったような話なので、よく知らない人が読むと難病という気がしないかもしれません。

 

 

 

ですが、標準治療のように、「栄養状態」を無視して治療しようとすると迷走するようです。

 

 

 

改めて「多発性硬化症」がどんな疾患なのかお話します。

 

 

 

スポンサーリンク

 

多発性硬化症(MS)とは

 

 

 

 

神経は、2種類に分けられます。

 

 

 

  • 中枢(ちゅうすう)神経系・・・脳と脊髄からなる神経

 

  • 末梢(まっしょう)神経系・・・脳と脊髄以外の神経

 

 

 

『ACTIVATE 中枢神経と末梢神経の違い』より引用

 

 

 

 

 

 

「中枢神経」は、全神経のコントロールセンターで、指令を出す役割があります。

 

 

「末梢神経」は、脳や脊髄と体をつなぐ神経で、指令や情報を伝える役割があります。

 

 

 

ちなみに、末梢神経のうち、「自分の意思とは無関係に体の機能を調節する神経」を「自律神経 じりつしんけい」と言います。

 

 

 

 

 

本記事のテーマである、「多発性硬化症 Multiple Sclerosis(マルチプル スクレローシス)」は、中枢神経系の病気です。

 

 

 

 

 

『Wikipedia 多発性硬化症』より引用

 

 

多発性硬化症(たはつせいこうかしょう、英: multiple sclerosis; MS)とは中枢性脱髄疾患の一つで、神経のミエリン鞘が破壊され脳、脊髄、視神経などに病変が起こり、多様な神経症状が再発と寛解を繰り返す疾患で、日本では特定疾患に認定されている指定難病である。

 

 

病名は、神経を包む組織(ミエリン鞘)が破壊されて生じる硬化が多数の領域で発生することに由来している。

 

 

 

以下のような聞きなれない言葉がでてきたので、順に説明していきます。

 

 

 

  • ミエリン鞘

 

 

  • 中枢性脱髄疾患

 

 

 

 

ミエリン鞘(髄鞘)とは

 

 

 

「ミエリン鞘 みえりんしょう(髄鞘 ずいしょう)」は、神経細胞(ニューロン)の軸索の周りを囲んでいる絶縁体の事です。

 

 

 

 

絶縁体とは、電気を伝えない物体のことです。

 

 

 

以下が神経細胞(ニューロン)です。

 

 

 

 

 

 

 

 

この「軸索 じくさく」部分に、「ミエリン鞘(髄鞘)」が巻きついているというわけです。

 

 

 

 

中枢神経系では、「オリゴデンドロサイト」が髄鞘を形成し、

 

 

 

 

 

 

 

末梢神経系では、「シュワン細胞」が髄鞘を形成しています。

 

 

 

 

 

 

 

 

ほとんどの神経に髄鞘が巻きついています。このような神経を「有髄神経 ゆうずいしんけい」と言い、髄鞘に覆われていない神経を「無髄神経 むずいしんけい」と言います。

 

  • 髄鞘あり・・・有髄神経(伝導速度が早い)

 

  • 髄鞘なし・・・無髄神経(伝導速度が遅い)

 

 

 

髄鞘は、電気を通しにくい脂質の層です。

 

 

従って、この構造はよく「電線」と「電線のカバー」に例えられます。

 

 

 

電線と違い、軸索の全体を覆っているのではなく、一定の間隔を明けて軸索がむき出しになっています。

 

 

この部分を「ランビエ絞輪 らんびえこうりん」と言います。

 

 

 

 

神経を流れる電気信号は、髄鞘を飛び越えて「ランビエ絞輪」をジャンプするように伝わっていきます。これを、「跳躍伝道 ちょうやくでんどう」と言います。

 

 

 

 

 

 

これによって早いスピードで電気信号を送れるのです。

 

 

 

神経細胞(ニューロン)に巻きついている「オリゴデンドロサイト」と「シュワン細胞」はグリア細胞の一種です。

 

詳しくは以下の記事に書いています。

 

 

「脳のエネルギー源はブドウ糖なので糖質をしっかり摂りましょう」と言う人が語らない話

 

 

 

 

スポンサーリンク

 

 

脱髄疾患とは

 

 

 

「中枢性脱髄疾患」の「脱髄 だつずい」とは、髄鞘が破壊されることです。

 

 

溶けるように損傷するようです。

 

 

 

『脳神経外科医が教える病気にならない神経クリーニング / 著者:工藤千秋』より引用

 

 

姿勢が悪いために神経が圧迫され、その結果信号が流れずに神経がさびついたり、また神経に必要不可欠な酸素が足りなくなったりすると、このミエリンが溶けてしまいます。

 

 

すると電気信号の流れが遅くなり、場合によっては電気が途切れてしまう、なんてことに・・・・・・。

 

 

これが、すなわち「神経の老化」です。

 

 

ミエリンを失った神経は、脳からの指令を素早く送ることができません。

 

 

そればかりか、ミエリンが傷つくと電気信号の「漏れ」や「つまり」まで招き、だんだん神経の機能は低下して、さまざまな不調が起きてしまうのです。

 

 

ミエリンが溶けきってしまうと、体が硬まってこわばる「多発性硬化症」という難病になるおそれも。

 

 

(51~52p)

 

 

 

 

 

 

 

 

ちなみに、中枢神経の髄鞘が(オリゴデンドロサイト)が破壊される疾患は「多発性硬化症」ですが、末梢神経の髄鞘(シュワン細胞)が破壊される疾患を「ギラン・バレー症候群」と言います。

 

 

 

ここからは、「多発性硬化症」について説明します。

 

 

 

スポンサーリンク

 

 

 

多発性硬化症の症状

 

 

 

絶縁体の部分である「ミエリン鞘(髄鞘)」は、再生できるので、病状が安定すればよく治るそうです。

 

 

 

しかし、根本的に治らなけば解決ではありません。

 

 

 

多発性硬化症は「再発」「寛解」をくり返します。

 

 

 

そして、徐々に症状が悪化していきます。

 

 

 

「寛解 かんかい」とは、症状が見かけ上治まった状態の事を言い、薬を使わなくても症状が完全に無くなった状態を「完治」と言います。

 

 

 

多発性硬化症の患者を解剖して脳や脊髄を調べると、硬く感じられる病変があちこちに見つかるそうです。

 

 

 

『難病情報センター 多発性硬化症/視神経脊髄炎(指定難病13)』より引用

 

 

1. 「多発性硬化症」とはどのような病気ですか

 

 

多発性硬化症は中枢神経系の脱髄疾患の一つです。

 

 

 

私達の神経活動は神経細胞から出る細い電線のような神経の線を伝わる電気活動によってすべて行われています。

 

 

家庭の電線がショートしないようにビニールのカバーからなる絶縁体によって被われているように、神経の線も髄鞘というもので被われています。

 

 

この髄鞘が壊れて中の電線がむき出しになる病気が脱髄疾患です。

 

 

 

この脱髄が斑状にあちこちにでき(これを脱髄斑といいます)、病気が再発を繰り返すのが多発性硬化症(MS)です。

 

 

MSというのは英語のmultiple sclerosisの頭文字をとったものです。

 

 

病変が多発し、古くなると少し硬く感じられるのでこの名があります。

 

 

 

一方、抗アクアポリン4(AQP4)抗体という自己抗体の発見により、これまで視神経脊髄型MSと言われた中に視神経脊髄炎(NMO)が含まれることがわかってきました。

 

 

さらに、抗AQP4抗体陽性の方の中には、視神経と脊髄だけでなく脳にも病変を呈する方や、脊髄もしくは視神経だけに病変をもつ方などいろいろなパターンがあることがわかってきました。

 

 

 

表れる症状は、大脳、小脳、脳幹、視神経、脊髄・・・どこに脱髄が起こるかによって様々です。人それぞれで、例えば、以下のようになります。

 

 

 

  • 視覚障害

 

  • 疲労

 

  • 痛み

 

  • 平衡機能障害・ふるえ

 

  • 認知機能・感情障害

 

  • 排尿障害

 

  • 性機能障害

 

 

 

 

悪化するとどうなるか具体例を紹介します。

 

 

6. この病気ではどのような症状がおきますか

 

 

MSの症状はどこに病変ができるかによって千差万別です。

 

 

視神経が障害されると視力が低下したり、視野が欠けたりします。視神経のみが侵されるときは球後視神経炎といって、多くの患者さんは眼科にかかります。

 

 

その一部の人が後にMSとなります。

 

 

球後視神経炎のときは目を動かすと目の奥に痛みを感じることがあります。

 

 

脳幹部が障害されると目を動かす神経が麻痺してものが二重に見えたり(複視)、目が揺れたり(眼振)、顔の感覚や運動が麻痺したり、ものが飲み込みにくくなったり、しゃべりにくくなったりします。

 

 

小脳が障害されるとまっすぐ歩けなくなり、ちょうどお酒に酔った様な歩き方になったり、手がふるえたりします。

 

 

大脳の病変では手足の感覚障害や運動障害の他、認知機能にも影響を与えることがあります.ただし,脊髄や視神経に比べると大きいので、病変があっても何も症状を呈さないこともあります。

 

 

脊髄が障害されると胸や腹の帯状のしびれ、ぴりぴりした痛み、手足のしびれや運動麻痺、尿失禁、排尿・排便障害などが起こります。

 

 

脊髄障害の回復期に手や足が急にジーンとして突っ張ることがあります。これは有痛性強直性痙攣といい、てんかんとは違います。

 

 

熱い風呂に入ったりして体温が上がると一過性にMSの症状が悪くなることがあります。これはウートフ徴候といいます。

 

 

 

けっこう大変な症状ですが、平均発症年齢が30代で、男性より女性に多いそうです。

 

 

 

場合によっては、後遺症を残したり、車椅子になったり、寝たきりになるみたいです。

 

 

 

原因を知りたいと思いませんか?

 

 

 

スポンサーリンク

 

 

 

脱髄、多発性硬化症の原因

 

 

脱髄(「ミエリン鞘(髄鞘)」が傷つく)の原因がこちらです。

 

 

  • 姿勢が悪くて神経を圧迫する

 

  • 神経に必要な酸素が不足する

 

 

 

 

そして、脱髄疾患の一つである「多発性硬化症」の原因を調べてみると、遺伝、自己免疫、ウイルスが挙げられていました。

 

 

 

中でも、現在、自己免疫説が有力だそうです。

 

 

 

『NIKKEI STYLE 最近よく聞く「多発性硬化症」ってどんな病気? 「見えにくい」「感覚が鈍くなる」など症状は多岐』より引用

 

 

「多発性硬化症(Multiple Sclerosis=MS)は脳や脊髄、視神経などの中枢神経に炎症が起こり、多様な神経症状(視覚障害、感覚低下など)を繰り返しながら進行していく病気です。様々な研究が進んでいますが、現在のところ根治する方法はなく、国の指定難病の一つになっています」

 

 

「発症の原因もまだ解明されていませんが、免疫の働きが関係していると考えられています。何らかのウイルスが体内に侵入してきたとき、通常は外敵から体を守るために免疫の仕組みが働いて、血液中のリンパ球が、ウイルスに攻撃をしかけます。ところが、ウイルスではなく、自分自身の組織を攻撃してしまうことがあります。これを『自己免疫疾患』と呼び、多発性硬化症も自己免疫疾患とされています」

 

 

「多発性硬化症は、脳や脊髄の神経を覆っている髄鞘(ずいしょう、ミエリンとも呼ぶ)が免疫に攻撃されることで、炎症を起こして脱髄(だつずい)という状態になり、様々な神経症状が現れます。これは電線にたとえてみると、分かりやすいかもしれません」

 

 

 

 

原因が不明、炎症、自己免疫疾患・・・

 

 

 

過去の記事で扱ってきた症状とかぶります。

 

 

人によって「遺伝的な弱点」が違うので、表れる結果が違うだけで、原因は似たり寄ったりなのかもしれません。

 

 

 

炎症や自己免疫疾患については、以下の記事でお話しています。

 

炎症と自己免疫疾患について分かりやすく説明してみた

 

 

 

 

 

 

しかし、この手の慢性疾患の原因の候補には何故かいつも「栄養」は入っていません。

 

 

 

だからダメなのです。

 

 

 

というわけで、ここからは栄養の視点から考えてみます。

 

 

 

 

多発性硬化症と栄養

 

 

多発性硬化症は原因が分かっていないので、ネットで検索すると、小難しい理屈がいくつも見つかります。

 

 

 

ですが、他の難病と同じように、本質はシンプルなものかもしれません。

 

 

 

多発性硬化症も深刻なビタミン不足が原因と考えられるからです。

 

 

しかもそれは、随分前に分かっていたことです。

 

 

 

『藤川徳美医師 facebook 2017年9月13日』より引用

 

 

7.Frederick Robert Klenner(1907-1984)の功績-2、多発性硬化症に対するビタミンB治療

 

Helen Saul Case:Orthomolecular Nutrition for Everyone: Megavitamins and Your Best Health Ever、より

 

クレナーは高用量のビタミンB投与により。多発性硬化症(MS)を改善させた。

 

1930年代、MS患者に髄腔内B1投与を行った。

 

麻痺のためストレッチャーで手術室に入ってきたMS患者にB1を30mg髄腔内投与を行った。

 

効果はすぐ現れ、歩いて手術室から退出できた。

 

しかしその効果は一時的なものだった。

 

クレナーは、MSは深刻なビタミン不足により生じているものと確信した。

 

1940年代、一種類のビタミンで改善するなら、二種類のビタミンを使えばより改善するのではないかと考え、60mgのB1と100mgのナイアシン(B3)静注を行い効果を上げた。

 

「多くの栄養素の不足による神経変性」がMSの原因であるとクレナーは考え、幅広い栄養学的アプローチを行った。

 

その内容は下記の通り、

 

B1、300~500mgを1日4回。必要があればさらに400mgの静注、筋注。

 

B2、25mgを1日4回。40~80mg注射。

 

B3、100~3000mgを1日4回。

 

B5、200mgを1日4回。

 

B6、100~200mgを1日4回。

 

B12、1000mcg、週3回注射。

 

C、10~20g。

 

コリン、600~1400mgを1日4回。

 

レシチン、1200mgを1日3回。

 

Mg、100mgを1日3回。

 

グリシン、スプーン1杯を1日3回。

 

Zn、10mgを1日3回。

 

E、800~1600IU。

 

D、Caのサプリメント。

 

高タンパク食、精製糖質と果物は禁止。

 

この治療により、MSによるミエリン変性の進行は完全に食い止められた。

 

ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー

 

MSだけではなく、重症筋無力症、パーキンソン病、脊髄小脳変性症、レビー小体病、アルツハイマー病、など神経変性疾患は全て、糖質過多による神経細胞の質的な栄養失調。

 

B1とナイアシン重視の補給。

 

B1の量がすごいですね。

 

B50を6錠+ベンフォチアミン150mgを毎日の量に相当。

 

E(d-α)は2000IU目標。

 

Dは当然10000IU。

 

 

 

 

年代に注目して下さい、1930代に1940年代です。

 

 

癌の原因も昔にすでに分かっていましたが、いまだに「発がん性物質」ばかりに注目して、真相は無視です。

 

 

それと同じパターンです。

 

 

 

癌細胞の発生の根本的な原因は嫌気的なものであると、1966年に発表されていました。

 

【注意】癌の本質を理解していないと症状が悪化する治療法を選択します

 

 

 

もうちょっと詳しい説明が以下になります。

 

 

『藤川徳美医師 facebook 2017年6月14日』より引用

 

 

 

27、多発性硬化症(MS)、重症筋無力症

 

 

Abram Hoffer:Orthomolecular Medicine For Everyone、より

 

 

MS、重症筋無力症などの神経疾患は、神経細胞の栄養不足による飢餓により生じる。

 

(栄養=必須アミノ酸+必須脂肪酸+ビタミン+ミネラル)

 

 

まず、砂糖などの精製糖質を止める。

 

脳アレルギーの原因となる、小麦、牛乳を止める。

 

B3は神経細胞の脱髄によるミエリン変性を防ぐ。

 

B1、B3、他のB群、C、E、Mg、Ca、Zn。

 

そして高用量のDが有効。

 

低緯度地域より高緯度地域の方がMSは圧倒的に多い。

 

つまり、D不足との関連が強い。

 

著者(Andrew W Saul)は、2000~3000IUのDサプリを飲み(RDAの5倍)、日光浴も積極的に行っていたが、25-ヒドロキシD濃度は、25ng/mLと異常低値だった。

 

(40以下はD不足。自分は2年間10000IU飲んで88)

 

(高タンパク/低糖質食は大前提)

 

ナイアシン500~1000mg、

 

C3000mg、

 

D5000~10000IU、

 

Bコンプレックス100mg、

 

E1200~2000IU、

 

ω3脂肪酸3000mg、

 

クエン酸亜鉛50mg。

 

 

 

回復に必要な栄養をバランスではなく、必要な量だけ補っていきます。

 

 

 

 

糖質過多・タンパク質不足・脂質不足・ビタミン不足・ミネラル不足

 

 

・・・この状態を、質的な栄養失調と言います。

 

 

 

糖質(ブドウ糖)は自分の体で合成できます。必要な量はごくわずかで、それを越えるとになるので「栄養」とはみなしません。

 

 

人間の身体に必要な糖質量を血糖値の視点から分かりやすく説明してみた

 

 

糖質を摂りながら治療すると、効果が落ちます。

 

 

 

そして、私が気になったのは、30代の女性に発症する・・・という点です。

 

 

この年代の女性に共通する栄養状態は、「鉄不足」です。

 

 

 

 

『脳神経外科医が教える病気にならない神経クリーニング / 著者:工藤千秋』より引用

 

 

神経老化の犯人が年齢以外にもあることを端的に示す例として、女性にみられる「貧血」もあります。

 

 

貧血は「貧しい血」と書きますが、血液の量が少ないわけではありません。

 

 

血中の赤血球や酸素を運ぶヘモグロビンや鉄分が少ないために、体が酸素不足になっているのです。

 

 

困ったことに神経は酸素不足に対してとても弱いので、酸素が十分ないと神経はすぐに老化してしまいます。

 

 

さらに神経を覆うミエリンは、酸素が足りないとはがれたり、巻きなおすのに時間がかかったりする性質があります。

 

 

新しいカバーをどんどん巻きなおさなければいけないのに、酸素が足りないと、ミエリンを巻きなおすスピードがどんどん遅くなってしまう。

 

 

そうなれば、ボロボロのミエリンがどんどん増えてしまう・・・・・・。

 

 

これはまさに、神経の老化が加速していることにほかなりません。

 

 

(59p)

 

 

 

 

日本人の30代女性は、生理や出産で鉄不足になっています。

 

 

 

その根拠は以下に書いています。

 

フェリチンと鉄不足について分かりやすく説明してみた

 

 

 

鉄不足が招く酸素不足。

 

 

これも原因の一つではないでしょうか。

 

 

 

 

 

どちらを信じるかは自由ですが、昔から分かっていたことを、いつまでも分からない分からないと言っている人達に付き合っていたら健康を損ねてしまいます。

 

 

社会は、栄養という視点を欠いた状態で疾患を治そうとすることの愚かさに気付くべきです。

 

 

 

スポンサーリンク

 

 

腸内環境が悪化する原因と、糖質制限で便秘になる場合の対策

 

疾患は「その人の遺伝的に弱い部分」に表れます。

 

 

私の場合は同じ消化器官でも、胃は弱かったのに、何故か腸は弱くありません。

 

 

これまでの人生を振り返っても、食生活がどうであろうが、腸の問題は抱えたことがないのです。

 

 

他のところは弱いのですが、丈夫なところもあるようです。

 

 

 

困った事がないので、これまで、腸に関する記事は書いた事がなかったのですが、腸内環境についてや、糖質制限で便秘をする・・・といったご相談はよくいただきます。

 

 

なので、本記事では、このようなケースの原因と解決法についてお話します。

 

 

 

スポンサーリンク

 

脂質不足が原因で便秘になる

 

 

世間には、腸の健康には〇〇菌・・・というセリフが五万と転がっています。

 

 

ですが、話を「菌」という小さくて複雑な部分にフォーカスし過ぎることで、本質が見えなくなっているように思えます。

 

 

 

 

まず、一般的な便秘の対策について考えさせられる記事をご紹介します。

 

 

『スロトレ実践報告ブログ 糖質制限開始から7ヶ月で便秘とサヨナラできました』より引用

 

 

定番の便秘の予防法や解消法はあまり役に立たない

 

 

一般的な便秘の予防法や解消法は、食物繊維や乳酸菌をたくさん摂取するとか、体操などでお腹周りを刺激して、腸の働きを活発にすることとされています。

 

 

でも、私の経験からは、これらは便秘の解消にはほとんど役に立っていなかったと言えます。

 

 

まず食物繊維ですが、私は、糖質制限を開始する前よりも開始後の方が、摂取量が多くなっていたのに便が固くなりました。

 

 

米やパンを食べない代わりに納豆や豆腐をよく食べるようになったので、間違いなく食物繊維の摂取量は増えています。

 

 

食物繊維が豊富なブロッコリーも毎日のように食べていますが、これらが、便通に変化を与えたということはありませんね。

 

 

乳酸菌についても食物繊維と同様です。

 

 

糖質制限前は、ヨーグルトを半年ほど食べていなかったのですが、糖質制限開始から毎日のように食べています。しかし、便通に変化なし。

 

 

このような自分の体験から、定番とされている便秘の解消法なんていい加減だということがわかりましたね。

 

 

 

私は常々、定説はあてにならないと述べていますが、腸も例外ではないようです。

 

 

ちなみに、私は1日の糖質量が10g以下になるようにしています。野菜ほぼの糖質制限なので、食物繊維の量が増えて便秘になることはありません。

 

 

 

この方の解決策は、「脂質の摂取量を増やす」でした。続きをご覧下さい。

 

 

乾燥した便なら脂質不足を疑ってみる

 

 

このブログでは、以前にも紹介していますが、便秘は、脂質不足が原因ということも考えられます。むしろ、便秘の大部分が脂質不足だと思います。

 

 

私は、便秘気味ではあったものの、毎日排便があったことから、とにかく自分の便を観察することにしました。

 

 

小さく丸く固い便は明らかに水気がありません。汚い話ですが、おそらく便を触っても手につくことはなかったと思いますね。お尻を拭いたトイレットペーパーを見ても、まったく便が付いていませんでした。はっきり言って、排便後にお尻を拭く必要なんてない状態でしたね。

 

 

こういう便の状態から、水分と脂が不足しているのではないかと思い、さっそく水をたくさん飲むようにしました。でも、体にとって余分な水はすぐに尿として出てしまうんですよね。だから、どんなにたくさんの水を飲んでも腸内に潤いを与えることができません。

 

 

そこで、次は、脂質を多く摂取することにしました。

 

 

これがどうやら功を奏したようで、スーパーで肉を買った時にもらった消しゴムほどの大きさの牛脂を食べた翌日には、柔らかい便が出ました。その効果は3日ほど続きました。便の色も黒かったのが、自分の肌の色くらいまで白くなりました。

 

 

それからは、サラダを食べる時には必ずマヨネーズをかけるようにしました。ハムや豆腐にもかけて食べたりしましたね。

 

 

このようにマヨネーズの摂取量を増やしたところ、糖質制限開始から5ヶ月ほど、マヨネーズをよく食べるようになってから2ヶ月ほど経ったときには、以前のように柔らかい便に戻っていました。

 

 

小さく丸く硬い便が出ることはほとんどありません。さらに糖質制限開始から6ヶ月以上経ったときには、マヨネーズを食べなくても、翌日の便が固いということは無くなっていました。

 

 

 

紹介した話では、便秘になる原因として、「脂質不足」と「食物繊維の量が増えた」事を上げられていました。

 

 

このうち問題が大きいのは後者です。

 

 

 

スポンサーリンク

 

 

腸内環境が悪化する原因

 

 

糖質制限に限らず、食物繊維を多く摂られている方で便秘ぎみの方は、まず食物繊維に対する認識を改めるべきだと思います。

 

 

というのも、人間の胃や腸には、食物繊維を消化する酵素はないからです。

 

 

 

体の構造から考えると、「食物繊維を食べる」という選択自体が、そもそも間違いなのです。食べて便秘にならなかったらラッキー・・・ぐらいの感覚でちょうどいいです。

 

 

 

そんな人間は、悪玉細菌によって腐敗・発酵させる事で野菜等を便にします。

 

 

 

腐敗・発酵なので、体にとっては有害です。

 

 

 

毒素が腸を傷つけ血管内部に侵入し、それによって以下のような疾患の原因になります。

 

 

 

  • 過敏性大腸炎

 

  • リウマチ

 

  • 喘息

 

  • クローン病

 

 

 

すると体は、腸内の水分を減らす事で、腐敗・発酵を防ごうとします。

 

 

これが便が硬くなる原因です。

 

 

 

植物食性(草食)動物と食物繊維

 

 

食物繊維を食べても大丈夫な植物食性動物は、体内に特殊な発酵タンクを持っていたりします。

 

 

 

例えば、ゴリラの場合は、食物繊維を発酵させて生じる「短鎖脂肪酸 たんさしぼうさん」を栄養源にしています。

 

 

 

「短鎖脂肪酸」は、大腸で腸内フローラ(腸内細菌叢)によって作られ、腸内環境をよくする・・・として、最近よく紹介されています。

 

 

 

「短鎖脂肪酸」が健康に良いかのように言われていますが、鵜呑みにせず、以下のような事実も知っておいた方がよいでしょう。

 

 

 

 

  • 短鎖脂肪酸をエネルギー源としている馬や日本猿の寿命は25年~30年。ゴリラは35年~40年。

 

 

  • 人間よりも何十倍もの短鎖脂肪酸を摂り入れているゴリラの死因の多くは「腸炎」。他に多いのが「ウイルス感染」、「肺炎」。

 

 

 

寿命は種類によってある程度決まっているので、短くても仕方がないとも思いますが、

 

 

炎症や感染症などの疾患が多い・・・というのは問題ですね。これはどう考えても不具合です。

 

 

以前も紹介したことがありますが、重要なのでもう一度載せておきます。

 

 

『宇野コラム Uno column (追記あり)あなたはゴリラ?発酵食と高繊維食はゴリラでOK』より引用

 

 

つまり、人間の大腸は草食動物と肉食動物の中間であり、人間の大腸は解剖学的に、草食動物のような過発酵には適さないのです。

 

 

食物繊維を沢山摂取して、なおかつ、高フォドマップのような発酵食品を沢山食べると、人間の大腸は、それに耐えられず、過敏性腸症候群や大腸憩室を来すことになります。

 

 

しかし、大丈夫だという人もいます。

 

 

そういう人は、ゴリラや猿に似た丈夫な大腸の持ち主かもしれません。

 

 

しかし、生まれつきゴリラではないので、慢性的な高圧力によって、だんだんと腸管が拡張してきて、腸管が薄くなり、腸が横に伸びて、収縮力が低下し、巨大結腸症の方向へ向かってゆきます。

 

 

 

 

人間の大腸はわずかな発酵にしか耐えられない構造だそうです。

 

 

なので、植物食性動物の真似は慎重になった方がいいでしょう。

 

 

 

 

 

スポンサーリンク

 

 

肉を食べると腸で腐って発癌性物質が発生するという説について

 

 

食物繊維は腸内で腐敗・発酵して便にします。

 

 

ここまでの流れから、野菜や食物繊維との付き合いを考えた方がいい・・・というのは理解できたと思います。

 

 

じゃあ、肉はどうなんだ?と思う方がいるので、これについて考えていきます。

 

 

「肉を食べると腸で腐って発癌性物質が発生する」という説があります。

 

 

私も断食や1日1食をしていた時に、この手の説をみました。

 

 

その当時は「野菜=ヘルシー」だと思っていたので、なんとなく、そんな気がしていたのですが、何事もイメージで物事を判断してはいけません。

 

 

肉だけが腸内で腐る・・・という現象が本当に起こるのかどうか考えてみます。

 

 

肉が腸内で腐る為には、肉のまま腸内に移動しなければなりません。

 

 

まず、以下の記事をお読み下さい。

 

 

 

『新しい創傷治療 消毒とガーゼの撲滅を目指して 2014/08/06』より引用

 

 

40代男性、昼に寿司を食べた後4時間後に急に立てなくなるほどの腹痛が出現し救急車にて搬送された患者さんです。当院外来医が胃アニサキス症を疑い、私が緊急内視鏡検査をしました。

 

 

食べてから5時間後の内視鏡画像ですが、寿司ネタは見事に消化され、魚の面影はまるでありませんが、シャリだけは見事に残っています。これを見てもご飯が如何に消化が悪いかが分かります

 

 

 

これは胃の中の話ですが、消化器官なので、腸と全く無関係ではありません。胃の中での消化は以下ようになります。

 

 

 

  • ごはん・・・5時間後原形あり

 

  • ・・・・5時間後消える

 

 

 

魚は動物性食品ですので、肉と同じカテゴリーに属します。

 

 

 

ちなみに、肉だけ食べた場合も食後30分で胃から消えます。

 

消化に良い食品の嘘。慢性的に胃がもたれる人は糖質の過食を疑え!

 

 

あたりまえですが、動物性食品は、胃から腸にそのままの形でワープするわけではありません。

 

 

ある程度分解されて腸に到達します。

 

 

つまり、この時点で元肉であって、肉ではありません。

 

 

で、最終的に小腸で「ぺプチターゼ」によってアミノ酸にまで分解されます。

 

 

 

一方、炭水化物は、胃カメラの画像もそうですが、唾液でちょっと分解した状態で何時間も胃に留まって、十二指腸を通って小腸に行きます。

 

 

留まるのは「糖反射 とうはんしゃ」が考えられますが、とにかく消化が悪いです。

 

 

 

糖反射については、以下の記事で説明しています。

 

どこも異常がないのに消化が遅くて胃が重いのは「糖反射」が原因かもしれません

 

 

 

消化の悪い「炭水化物」が小腸に未消化で届いて腐る・・・というなら分かりますが、胃の中からさっさと消えるような消化の良い「肉」が腐るという事はありえません。

 

 

 

一応、食べ物を消化する酵素は「タンパク質」でできていますから、

 

 

例えば「タンパク質」不足の人は、消化酵素が不足して、「タンパク質」が消化しにくくなる・・・ということはあります。

 

 

なので、それによって肉が未消化のまま小腸にいって腐る・・・ということならあるかもしれません。

 

 

でもそれは、肉が悪いのではなく、「タンパク質」不足で肉を消化できない体に問題があると言えます。

 

 

人間は動物食性動物ですから、健康体であれば肉はさっさと消化します。

 

 

 

その本来の機能がおかしくなる程「タンパク質」が不足するような食生活をおくってきた事が問題なのです。

 

 

 

スポンサーリンク

 

 

肉と発ガン性物質の関係

 

 

また、仮に肉が未消化で、それが腐って有害物質になったとしましょう。

 

 

でもだからといって癌の心配をするのは筋が違います。

 

 

というのも、癌は何もしなくても生きているだけで毎日発生しているからです。

 

 

『朝日新聞 DIGITAL がん細胞は一日にいくつ発生している?』より引用

 

 

原典を引用しているサイトがないか、インターネットで検索してみたところ、興味深いことが明らかになりました。

 

 

1日に発生するがん細胞の数がサイトによって異なるのです。

 

 

冒頭で紹介した「1日に5000個」が一番ポピュラーでしたが、その他に、「数百から数千個」「毎日1000~2000個」「毎日1000~5000個」「毎日2000~4000個」「毎日3000個」「毎日3000~5000個」「毎日3000~6000個」「毎日4000~6000個」「毎日5000~6000個」「毎日1万個以上」「数万個から数十万個ほど」などという記述が見つかります。

 

 

見つけた中で一番数字が大きいのは「毎日100万個」というのがありました。小さい方は「毎日数個」。幅が広すぎでしょう。

 

 

引用元を明示しているサイトはほとんどなく、明示していても論文ではなく一般書でした。

 

 

おそらく、それぞれのサイトで伝言ゲームのように引用し合ううちに、数字を盛ったり、書き間違えたりしたのではないかと考えられます。

 

 

英語圏まで広げて検索してみましたが、一次文献までさかのぼることはできませんでした。

 

いろんな情報を総合すると、フランク・マクファーレン・バーネットというオーストラリアの医学者が、突然変異の起こる確率、がん細胞の発生に必要な突然変異の数、一日に分裂する細胞の数などから推測したようです。

 

 

このような話は医学や栄養学にはたくさんあるので、とくに珍しい話ではありません。

 

 

で、癌の1番の問題は、発生することではなく、増殖、転移することです。例え発生しても、増殖しなければ怖くありません。

 

 

この世に五万とある癌が発生する原因にビクビクするより、例え癌が発生しても増殖させない体作りをすれば良いのです。

 

 

1番大切なのは、癌の餌である糖質を与えない事。突き詰めて言えば、糖質を多く含む植物性食品を控える事です。

 

 

 

というわけで、癌を防ぎたいなら、植物性食品を減らし、動物性食品を選ぶべきです。

 

 

・・・といっても、糖質制限で便秘になる人もいるので、次はその問題を解決したいと思います。

 

 

 

 

糖質制限で便秘になる原因

 

 

糖質制限を始めると、こむら返りが起きたり、便秘になって続かないという人がいます。

 

 

私はならなかったのですが、かなりおられるようです。

 

 

その原因は「マグネシウム不足」です。

 

 

 

糖質制限で「マグネシウム」が不足しやすい原因をまとめます。

 

 

 

  • 肉や消費量が増えると、「マグネシウム」の消費量が増える。

 

 

  • 脂質中心の食事だと「マグネシウム」が排泄される量が多い。

 

 

  • チーズは、マグネシウムよりカルシウムが多いので、たくさん食べると、マグネシウムが少なくなる。「マグネシウム」と「カルシウム」は拮抗関係にあるので、1:1で摂るように心がける。

 

 

何故このような事が起きるのかというと、「丸ごと」食べないからです。

 

 

人間は動物食性動物ですが、現在の私たちがその生活をしようとすると、色々と制約があります。

 

 

 

スポンサーリンク

 

 

骨に多く含まれているマグネシウム

 

 

実は「マグネシウム」は骨に多く含まれています。

 

 

人間の歯は「すりつぶつす」に適した歯の形をしていて、人類は大昔、骨やその骨髄を食べていたようですが、現代人はそれを食べません。

 

 

ミネラル不足を補う為に骨を食べる習慣の地域もあるそうです。

 

 

 

『吉冨信長氏 facebook 2016年7月27日』より引用

 

 

土壌や土地そのものにミネラル分が少なかった地域は、昔からあらゆる手段で摂取を試みました。

 

 

例えば北極圏に近いトナカイ遊牧民は住んでいる土地が岩塩の露出が少ないため、一般に捨てるはずのトナカイの蹄(ひづめ)は食べるし、骨も砕いて食べます(骨からは同時に脂も取ります)。

 

 

現代人は飽食の慣れにより麻痺しているのか、慢性的なミネラル不足となり、キレる、イライラする、うつになる、精神障害をおこすなどが後を絶ちません。

 

 

糖質制限をしている私でも、さすがに骨は食べられません。

 

 

 

また、肉食以外でもマグネシウムが減る事があるので注意が必要です。

 

 

 

『吉冨信長氏 facebook 2016年8月7日』より引用

 

 

マグネシウムは多くの植物性食品から摂取できますが、農薬や化学肥料の使い過ぎで土壌のマグネシウムは作物まであまり届かず、現在の野菜の栄養価低下をもたらしています。

 

 

さらに、海藻離れ、小魚離れ、大豆離れ、加工食品の増加などが決定的となっています。

 

 

また、食品添加物の多くがマグネシウムを損失させます。

 

 

外食の多い人や加工度の高い食品に依存している人は、慢性的なマグネシウム欠乏に陥り、体内のすべてにおいて影響があるため、マグネシウム摂取を開始しても改善するのに時間がかかります。

 

 

有名なのは加工肉で使用されるリン酸塩です。これはマグネシウムと結合力が非常に高いものです。

 

 

過剰な糖分からも多くのマグネシウムが取られてしまいます。

 

 

ある説では、グルコースの1分子を代謝するためには、少なくともマグネシウムの8~20分子を必要とするそうです。

 

 

過剰な精製糖質の摂取は避けるべきです。他にも多くの医薬品はマグネシウムと結合します。

 

 

重金属曝露によるマグネシウム欠乏もあります。

 

 

水銀、銀、カドミウム、銅、鉛などが体内に多く蓄積されていると、マグネシウムの吸収が低下します。

 

 

まずはこれらをデトックスすることも大事です。

 

 

特に日本人には水銀やカドミウムの曝露が多いのが現状です。

 

 

逆にマグネシウムをしっかり保持している人はこれら重金属を解毒する酵素がきちんと働きます。

 

 

よってまずは重金属をデトックスし、その後マグネシウム保持が安定するようになれば、重金属曝露からも比較的逃れられるかもしれません。

 

 

 

「マグネシウム」が不足している事で起こる場合の便秘は、マグネシウムを補う事で改善します。

 

 

 

私は便秘にならないので試していないですが、糖質制限で便秘になった方がこの方法で改善するケースが多いとのことです。

 

 

 

1番いいのはサプリメントで補うことです。理由は、毎日続ける場合、価格が安いのと、糖質などの余分なものが含まれていないからです。

 

 

でも、中にはサプリは嫌だという方もいます。

 

 

その場合、私なら、めかぶ、ココア、くるみ等、糖質量を考えながら摂取します。あと、大豆やゴマにも多く含まれています。マグネシウムが多く含まれている「ぬちまーす」という塩を使うのもいいでしょう。

 

 

余談ですが、めかぶは昔から好きで、糖質がほぼ0なので、スーパーで「味付けがしていないメカブ」と、「マグロのブロック」が安く手に入った時は、きざんでご飯なしの丼にして食べます。

 

 

ただ、以前から述べているように、食品に含まれている栄養の量はしれているので、不調の改善をすることが目的なら、量がしっかり摂れるサプリメントが効率がいいです。

 

 

 

マグネシウムのサプリは、種類によって吸収率が違います。

 

 

 

『藤川徳美医師 facebook 2017年12月14日』より引用

 

 

マグネシウムは多くの形で購入することができます。最も広く入手可能な形態は酸化マグネシウムであり、それは約5%しか吸収されないのでそれほど効果的ではない[11]。

 

 

マグネシウム酸化物サプリメントは、丸薬がより小さくて – 一般的にはマグネシウムを多く含みますが、ほとんどの人には役立たないのですが人気があります。

 

 

より良い形態のマグネシウムは、クエン酸マグネシウム、リンゴ酸マグネシウムであり、最もよく吸収されるものは塩化マグネシウムである。

 

(中略)

 

11. Dean, C. (2007) The Magnesium Miracle. Ballantine Books, ISBN-13: 9780345494580

 

 

ここまで、「マグネシウム不足」の便秘についてお話してきましたが、便秘になる原因には、「ビタミンC不足」もあります。

 

 

 

ビタミンCは糖質制限で不足しやすい栄養素なので注意が必要です。

 

 

 

ビタミンC不足による便秘

 

 

ビタミンCにはお腹を緩める効果があります。

 

 

私は現在、ビタミンC1000mgを、朝昼晩3回飲んでいますが、この飲み方だと下剤としては効果はありません。

 

 

便秘解消に使う場合、どのぐらいの量で効果があるのかというと、状態によって変わるようです。

 

 

『藤川徳美医師 facebook 2017年7月6日』より引用

 

 

ビタミンCは、健常時には10~20g程度しか吸収できないが、 重篤な病気では体内のC濃度が低下するため、腸耐性用量(bowel tolerance doses)が増える。

 

 

つまり、健康なときは1日10~20g程度で軟便になるが、重篤な病気の時は100gでも軟便にならない。

 

 

(中略)

 

 

Cは便秘に悩んでいる人には特効薬だと思う。

 

 

これほど安全で安価なものは他にはないはず。

 

 

毎時間2gを3~4回で多くの人で解決するのではないかと思う。

 

 

三石先生風に言うと、「便秘がCで治るからと言っても、Cが便秘の特効薬だと考えてはいけません。C不足があったので便秘をしたと考えるべきです。」

 

 

 

(追記)ビタミンCについて、読者のUさんから以下の記事のコメット欄で、体験を頂きました。こちらも参考にして下さい。

 

 

重度の花粉症の人も糖質制限や栄養療法で改善できる

 

 

>あと私も糖質制限を始めて便秘になりましたが、nowのビタミンC1000の錠剤は一気に10錠飲んでもダメでしたが、粉状のCにしてからは1時間おきにティースプーン半分2回でほぼ解消できました。錠剤の方はタイムリリース?徐々に吸収されるらしくて便秘には効果が薄いようです。

 

 

 

 

鉄サプリを飲んでいる人で便秘になる方も、ビタミンCが効果的です。

 

 

 

ただし、ビタミンCを摂りすぎると酸化するので、その還元の為にビタミンEが必要です。

 

 

 

 

 

 

 

 

 

以上、「腸内環境が悪化する原因」と、原因別に「便秘の改善」についてまとめました。

 

 

同じ症状でも、原因によって対処法は代わってくるので、よく観察して、原因を見極める事が大切です。

 

 

 

スポンサーリンク